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Abstract—The key exchange Diffie-Hellman protocol
originally works over the group Z∗

p where p is at least
a 300-digit number. Even though this implementation
is simple and secure, it makes the protocol unsuitable
for devices with limited computational power. This fact
led to a research of other algebraic structures which
could be used as a platform for this protocol in order
to decrease the computational and storage costs. Such
attempt can be found in the work of D. Kahrobaei
et al. posted in 2013. D. Kahrobaei et al. proposed
a structure of small matrices over a group ring as
a platform and claimed that this modification will not
affect the security of the Diffie-Hellman protocol. We
will attack this modification and prove that it is not
secure with the help of the theory of symmetric group
representations.

Index Terms—Diffie-Hellman protocol, public key
cryptography, symmetric group representations.

I. Introduction

ONE of the requirements of symmetric
cryptography is that two communicating parties

are able to establish a secret shared key over a public
channel without anyone else being able to retrieve their
shared key from the communication as well. One of
the cryptographic tools that solves this problem is the
Diffie-Hellman protocol which was introduced by Witfield
Diffie and Martin Hellman in 1976 in [2].
One of the drawbacks of this protocol is that it does not
ensure the authentication of both parties. This fact makes
the protocol vulnerable against the man-in-the-middle
attack.
Another drawback is that using Z∗

p ( the multiplicative
group of integers modulo prime p, where p is suggested
to have at least 300 digits), makes the protocol being
unsuitable for devices with limited computational power.
In order to decrease computational costs, we can exchange
Z∗

p for another algebraic structure. One of the approaches
that is trying to do so can be found in [6], where
D. Kahrobaei et al. proposed a semigroup of n × n
matrices over the group ring Fq[Sm] as a platform.
They proposed semigroups M3(Z7[S5]) and M3(Z2[S5])
specifically.
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The main advantage of this algebraic structure is that one
can precompute a multiplicative table for elements from
S5, which makes the computations in the semigroup very
time-efficient. Another advantage is that this modification
of the original protocol will not, according to D. Kahrobaei
et al., decrease its security. In this paper, we will show
that such modification will make the protocol insecure
and it will be possible to retrieve the secret shared key
within few hours using a common computer.
The security of the Diffie-Hellman key exchange protocol is
based on the absence of an algorithm capable of solving the
discrete logarithm problem in polynomial time. Nowadays,
we are aware of multiple algorithms that are solving the
discrete logarithm problem in non-polynomial time, such
as baby-step giant-step, Pohlig-Hellman and Pollard’s
Rho (for more details see [5]). The authors of [6] claimed
that those algorithms (together with the Shor’s quantum
algorithm) will not work for their modified protocol. In
this paper, we will concentrate on the baby-step giant-step
algorithm and show that it will be more effective than
D. Kahrobaei et al. claimed.
Firstly, we will describe the necessary algebraic theory.
Secondly, we will focus on the description of the original
and the modified Diffie-Hellman protocol. Then, we will
present the attack itself. After that, we will show that the
baby-step giant-step algorithm will work on the modified
protocol. The next section is focused on implementation
of our attack. Lastly, we will present a list of papers that
also proposed an attack on the modified protocol.

II. Definitions and notations

Definition 1 (Group ring). Let G = (G, ∗,−1 , e) be
a finite group and let R = (R, +,·, −, 0R, 1R) be a ring
with unity. Then a group ring R[G] is the set of all formal
sums ∑

g∈G

rgg,

where rg ∈ R.
For u =

∑
g∈G agg, v =

∑
h∈G bhh, u, v ∈ R[G],

ag, bh ∈ R. The addition u ⊕ v and multiplication u ⊗ v
is defined as follows:

u ⊕ v =
∑
q∈G

(aq + bq)q,

u ⊗ v =
∑
q∈G


 ∑

gh=q

agbh


q.
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Definition 2 (Period). Let M be a square matrix. The
least k ∈ N such that M i = M i+k, for some i ∈ N is called
the period of M .

Definition 3 (Pre-period). Let M be a square matrix.
The least r ∈ N such that there exists k ∈ N that ∀i ≥ r,
Mk+i = M i is called the pre-period of M .

Definition 4 (Representation). a representation
of a group G of degree n is a homomorphism
ϕ : G → GL(n, T ); ϕ(g) = ϕg for g ∈ G.

Definition 5 (Equivalent representations). Two
representations ϕ : G → GL(n, T ) and ψ : G → GL(m, T )
are equivalent if m = n and if F ∈ GL(n,T ) such that
ψg = FϕgF −1, ∀g ∈ G exists.

Definition 6 (ϕ-invariant subspace). For a representation
ϕ : G → GL(n,T ) a subspace S ≤ T n is ϕ-invariant if
ϕgs ∈ S, ∀g ∈ G, s ∈ S.

Definition 7 (Irreducible representation). a representa-
tion ϕ : G → GL(n,T ) is irreducible if and only if
ϕ-invariant subspaces of T n are {0} and T n.

Definition 8 (Partition of number n). Let n ∈ N, then
the partition λ of number n is defined as a non-increasing
sequence of m positive integers λ = (λ1, . . . , λm) such that
λ1 + . . . + λm = n. We denote λ � n.

Theorem 1. For n ∈ N and a field T of characteristics 0
or p, where p is a prime and p > n:

• each λ � n gives representation ϕλ : Sn → GL(nλ, T )
(for more details see [3, Theorem 4.12]),

• ϕλ is irreducible representation for all λ � n,
• λ � n, η � n, η �= λ, then ϕλ and ϕη are not

equivalent,
• each irreducible representation of Sn over T is

equivalent to some representation ϕλ,
• TSn �

∏
λ�n

Mnλ
(T ).

III. Diffie-Hellman protocol
A. Discrete logarithm

Let G = 〈g〉 be a finite cyclic group of order n. Then for
all elements b ∈ G exists one and only one x in interval
(0, . . . , n−1) such that b = gx. The number x is called the
discrete logarithm of element b in G. The task to compute
x when G, g and b are given is called the discrete logarithm
problem. We are not aware of any general method that
could solve the discrete logarithm problem on a common
computer in sub-exponential time.

B. Original Diffie-Hellman protocol
The requirement that two parties should be able to

construct a secret shared key over a public channel resulted
in the introduction of the Diffie-Hellman protocol in 1976.
This protocol describes an exchange between two parties A
and B leading to establishment of a secret shared key. Only
A and B possess the key and it can not be retrieved by
anyone who is listening to their conversation. The security

of this protocol is based on the difficulty of the discrete
logarithm problem.
The protocol works as follows:

• A and B decide on a finite cyclic group G and its
generating element g,

• A picks a secret number a ∈ (0, . . . , | G | −1) and
sends u = ga to B,

• B picks a secret number b ∈ (0, . . . , | G | −1) and
sends v = gb to A,

• A computes va = (gb)a = gab,
• B computes ua = (ga)b = gba,
• both A and B are in possession of the secret shared

key gab.
Both A and B are using the algorithm square and multiply
when computing ga, gb and gab.
An eavesdropper E, who is trying to retrieve the secret
shared key gab from the knowledge of G, g, ga, gb, gab,
is trying to solve the so called Diffie-Hellman problem.
The simplest and original implementation of the
Diffie-Hellman protocol uses the class of groups
Z∗

p as a platform. Working over groups from this
class is convenient since we can easily calculate powers
of its elements. Moreover, no fast algorithm that could
solve the discrete logarithm problem in those groups
is known. Nowadays, the protocol is considered secure,
if p is at least a 300-digit number and a and b are at
least 100-digit numbers. Unfortunately, these sizes of the
parameters do not make this protocol suitable for devices
with limited computational power. D. Kahrobaei et al.
proposed a semigroup of small matrices as a platform for
the protocol. Multiplication is fast in this structure hence
the protocol is not that time consuming.

C. Modified Diffie-Hellman protocol
The structure proposed to work with is a semigroup of

small matrices over the group ring Zp [Sm] where Zp is the
ring of integers modulo p and Sm is the symmetric group
of order m!. Parameters proposed in [6] are 3 × 3 matrices
over Z7 [S5] or over Z2 [S5].
The main advantage of this structure is that we can
precompute a multiplicative table for elements from S5;
hence multiplying two elements from Zp [S5] requires only
multiplying elements from Zp and searching in the multi-
plicative table.
The modified protocol works in the case M3(Z7[S5]) as
follows:

• A and B decides on a matrix M ∈ M3(Z7[S5]),
• A picks a secret number a ∈ N and sends Ma to B,
• B picks a secret number b ∈ N and sends M b to A,
• A computes (M b)a = M ba,
• B computes (Ma)b = Mab,
• both A and B are in possession of the secret shared

key Mab.
It is important to note that M has to be chosen properly,
i.e. that it has period larger than 1010. Otherwise the
attacker E could retrieve the secret shared key Mab by



Cryptanalysis based on the theory of symmetric
group representations

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 19

3

means of exhaustive search. The method to construct
a suitable matrix M ∈ M3(Z7[S5]) can be found in [6].

IV. Attack
The goal of our method is to retrieve the secret shared

key Mab with only the knowledge of Mn(Fq[Sm]), M , Ma

and M b. To do so, we do not have to find both a and b.
We can find a′ such that Ma′ = Ma. Then, the secret
shared key will be (Ma′)b = (Ma)b = Mab. Let us denote
N = Ma.
The core idea of our method is that we used the
representation theory of symmetric groups, which allows
us to reduce the work an attacker has to do. We know
that in order to break the Diffie-Hellman problem in
Mn(Zp[Sm]) we would have to solve the discrete logarithm
problem in this semigroup in a reasonable amount of time.
Since the order of M3(Z7[S5]) is approximately 10913, we
see it is not possible. However, the representation theory of
the symmetric groups allows us to transform the problem
onto a structure in which we are able to calculate the
discrete logarithms in feasible time.
Firstly, we will describe our method for the case of
M3(Z7[S5]). Secondly, we will introduce the approach that
solved the challenge given in [6] when using M3(Z2[S5]) as
a platform.

A. Case M3(Z7[S5])
The characteristics of Z7 does not divide the

order of S5, so the theory of symmetric group
representations gives us 7 irreducible representations
ϕi, i ∈ {1, . . . , 7}, i.e. homomorphisms

ϕi : S5 → GL(di,Z7),

where di ∈ {1, 4, 5, 6, 5, 4, 1}.
We can extend the homomorphisms in two steps as follows:

ϕ′
i : Z7[S5] → Mdi(Z7)

and
ψi : M3(Z7[S5]) → M3di(Z7).

Then, according to [11, Theorem 3.9] and
[4, Theorem 2.1.12], we obtain an algebra isomorphism
ψ = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7):

ψ : M3(Z7[S5]) →
M3(Z7) × M12(Z7) × M15(Z7) × M18(Z7) (1)
× M15(Z7) × M12(Z7) × M3(Z7).

We can see that the maximum order of matrices we will
work with is 18 which is very small.
Note that the homomorphisms ϕ′

i, i ∈ {1, . . . , 7} can be
efficiently computed (for more details see [3, Chapter 8]).
Now, we can map matrices M and N using the
isomorphism ψ. We get two 7-tuples

ψ(M) = (M(1), . . . , M(7))
ψ(N) = (N(1), . . . , N(7)).

To construct a′, we need to find numbers ai ∈ Z such that
Mai

(i) = N(i) for all i ∈ {1, . . . , 7}.
To obtain ai, i ∈ {1, . . . , 7} we will use the Menezes-Wu
algorithm which can be found in [8].
To simplify the situation, we assume that 0 is not an
eigen value of any of matrices M(i), i ∈ {1, . . . , 7}. In
fact, large powers of Jordan blocks with eigenvalue 0 are
zero matrices, so the simplification has no essential effect
regarding the attack.
In the following part, we will demonstrate the Menezes-Wu
algorithm. We fix i ∈ {1, . . . , 7} and find one ai, since all
ai, i ∈ {1, . . . , 7} can be obtained in the same manner.
Also, we will show this method for both the cases of
diagonal matrices M(i) and N(i) and non-diagonal matrices
M(i) and N(i).

a) Diagonalizable matrices: Matrices M(i)
and N(i) are diagonalizable if and only if their
characteristic polynomials decompose into the
product of linear factors and algebraic multiplicity
of each eigen value is equal to its geometric
multiplicity. In order to ensure that the characteristic
polynomial will decompose to the product of linear factors
we will work over the splitting field F of that polynomial.
Let us denote k the rank of matrices M(i) and N(i),
λ1, . . . , λk eigen values of M(i) and u1, . . . , uk a basis of
Fk composed of eigen vectors of M(i).
Let U be an invertible matrix that has eigen vectors
u1, . . . , uk as columns. It holds that

U−1M(i)U =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk


 .

Then

U−1Ma
(i)U =




λa
1 0 . . . 0

0 λa
2 . . . 0

...
...

. . .
...

0 0 . . . λa
k


 = U−1N(i)U.

If we find c ∈ N0 such that λc
j = λa

j for all
j ∈ {1, . . . , k}, it will hold that M c

(i) = N(i) and c will
be the required ai for M(i) and N(i).
To obtain c we have to:

• find the characteristic polynomial q, eigen values
λ1, . . . , λk and eigen vectors u1, . . . , uk of M(i),

• equations

N(i)uj = λa
j uj , ∀j ∈ {1, . . . ,k}

lead to finding cj ∈ N0 such that λ
cj

j = λa
j for all λj ,

j ∈ {1, . . . , k}. In order to find cj , j ∈ {1, . . . , k},
we have to solve the discrete logarithm problem
in groups of order ord(λj), j ∈ {1, . . . , 7} (note
that for every irreducible factor qj of q we work in
Z7 [x] /(qj) where x + (qj) represents the eigen value
λj),
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• the fact that ord(λj) | (cj − c) ,∀j ∈ {1, . . . , k} allows
us to put together a system of diophantine equations

c = cj − ord(λj) · hj , ∀j ∈ {1, . . . , k},

where hj ∈ Z. By solving this system of equations
(see [1, Algorithm 2.4.10]) we will get c such that
λc

j = λa
j , for all j ∈ {1, . . . , k}.

So, in order to find c, we need to know the orders of
eigen values λj , j ∈ {1, . . . , k} and we have to be able to
solve the discrete logarithm problem in groups of orders
ord(λj), j ∈ {1, . . . , k}.
For a fixed j ∈ {1, . . . , 7} we find the order of eigen
value λj using the fact that ord(λj) divides | T ∗

r |, where
Tr denotes field Z7(λj) � Z7 [x] /(qj), where qj is the
minimal polynomial of λj in Z7. Computing ord(x) in
(Z7 [x] /(qj))∗ gives us orders of all roots of polynomial
qj .
When computing the discrete logarithm in groups of
orders ord(λj), consider ord(λj) =| T ∗

r | represents the
worst case. Denote

|T ∗
r | = sl1

1 · sl2
2 · . . . · sln

n

the factorization of the order of T ∗
r . Now we can use the

Pohlig-Hellman reduction and reduce the computations
into group orders of which will be at most slm

m for some
m ∈ {1, . . . , n}. Also, for a polynomial q of degree d we
have | T ∗

r |= 7d −1. Since M(i), i ∈ {1, . . . , 7} have degrees
at most 18, then d ≤ 18 and prime factors of 7d − 1
for d ≤ 18 are small enough for us to be able to solve
the discrete logarithm problems in a reasonable amount
of time when using a common computer.

b) Non-diagonalizable matrices: We will outline the
method for non-diagonalizable matrices in this section.
Let us fix i ∈ {1, . . . , 7}. Assume that we have a basis
B such that [H]B is a matrix H expressed in terms of the
basis B which has a Jordan canonical form.
Let us have an invertible matrix U which has vectors of
basis B as columns. Then it holds that

U−1M(i)U =




J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jk




is a block diagonal matrix with Jordan blocks
Jj , j ∈ {1, . . . , k} on diagonal and

U−1N(i)U =




Ja
1 0 . . . 0
0 Ja

2 . . . 0
...

...
. . .

...
0 0 . . . Ja

k


 .

Now, we can find cj ∈ N0 for each Jordan block
Jj , j ∈ {1, . . . , k} such that J

cj

j = Ja
j .

Since for Jordan block

Jj =




λ 1 0 0 0
0 λ 1 . . . 0 0
0 0 λ 0 0

...
. . .

...
...

0 0 0 . . . λ 1
0 0 0 . . . 0 λ




we have

Ja
j =




λa
(

a
1
)
λa−1 (

a
2
)
λa−2 . . .

(
a

k−1
)
λa−k+1

0 λa
(

a
1
)
λa−1 . . .

(
a

k−2
)
λa−k+2

...
...

. . . . . .
...

0 0 . . . λa
(

a
1
)
λa−1

0 0 . . . 0 λa




,

and cj has to ensure equality of all elements in
upper triangular matrices Ja

j and J
cj

j . Note that if
Ja

j and J
c′

j

j have same values on the diagonal, we may
find cj of the form c′

j + z · ord(λ) for z ∈ (0,1,...,6).
Then, we can compute c ∈ N0 such that
Jc

j = Ja
j , j ∈ {1, . . . , k} and c will be the required

ai for M(i) and N(i).
Before we proceed to the construction of a′, we will show
how to compute the period of M(i) for some i ∈ {1, . . . , 7},
first.

c) Matrix period: Assuming that M(i) is
diagonalizable we have its Jordan canonical form

C =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk


 .

We can see that all Jordan blocks are of degree 1 and the
Jordan canonical form of an mth power of M(i) is

Cm =




λm
1 0 . . . 0
0 λm

2 . . . 0
...

...
. . .

...
0 0 . . . λm

k


 .

This means that for M(i) it holds that

per(M(i)) = LCM(ord(λ1), . . . , ord(λk)).

Assuming that M(i) is non-diagonalizable, it holds that

per(M(i)) = LCM(per(J1), . . . , per(Jk)),

where Jj , j ∈ {1, . . . , k} are Jordan blocks of non-zero
eigen values of M(i). The periods of the Jordan blocks can
be found using the following method.
Fixing j ∈ {1, . . . , k}, we denote pj the period of the
Jordan block Jj and λj the element on its diagonal. Then,
it has to hold that

pj = k · ord(λj)

for k ∈ N.
Having pj as a multiple of ord(λj) will ensure that the
elements on the diagonal of Jj will be the same as the
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elements on the diagonal of J
pj+1
j . Finding a fitting k ∈ N

will ensure that all elements above the diagonal of J
pj

j

will be zero and we will get Jj = J
pj+1
j .

Initialize pj = ord(λj) and split the calculation of k in
a few cases. It is important to keep in mind that we are
computing over a field with characteristic 7, so that all
operations with integers are modulo 7.

1) 7 divides pj and the rank of Jj is at most 7:
in this case 7 divides all binomial coefficients in
J

pj

j , hence k = 1 and per(Jj) = pj ;
2) 7 divides pj and the rank of Jj is greater than 7:

denote cj = pj/7. A problem can appear when
working with binomial coefficient

(
pj

7
)
. We know that

7 divides pj , hence
(

pj

7

)
= pj · (pj − 1)(pj − 2) · . . . · (pj − 6)

7 · 6 · 5 · . . . · 1

= cj · (pj − 1)(pj − 2) · . . . · (pj − 6)
6 · 5 · . . . · 1 .

For
(

pj

7
)

= 0, we need 7 | cj . If 7 does not divide cj , we
set k = 7 which will lead to per(Jj) being a multiple
of 7pj .
It is easy to see that 7 |

(7pj

14
)

therefore per(Jj) = kpj .
3) 7 does not divide ord(λj) and the rank of Jj is at least

2:
initialize pj = 7 · ord(λj). This case is described in
cases 1 and 2.

The maximum rank of Jordan blocks is 18, so this method
includes all possibilities.

d) Finding a′: At this point, we have obtained
a1, . . . , a7 such that

(Ma1
(1), . . . , Ma7

(7)) = (N(1), . . . ,N(7)).

We denote pi = per(M(i)), i ∈ {1, . . . , 7}. We may assume
a1, . . . , a7 ≥ pre-period(M). Then there exist constants
li ∈ N0, i ∈ {1, . . . , 7}, such that

a′ = a1 + l1p1 = a2 + l2p2 = . . . = a7 + l7p7. (2)

Equation (2) can be written as a system of diophantine
equations

a1 + l1p1 = a2 + l2p2 = . . . = a7 + l7p7,

where l1, . . . , l7 are calculated. After substituting any
li, i ∈ {1, . . . , 7} in (2), we get a′ as

a′ = x + my,

where x, y, m ∈ Z, and x and y are computed
and m is a parameter. Choosing m such that
a′ ≥ a1 . . . , a7 we find the secret shared key
(M b)a′ = (M b)a = Mab as was required.

B. Case M3(Z2[S5])
In this case, we can again find homomorphisms

ϕi, i ∈ {1, . . . , 7}

ϕi : S5 → GL(di,Z2),

where di ∈ {1, 4, 5, 6, 5, 4, 1}
and extend them as before

ϕ′
i : Z2[S5] → Mdi

(Z2)

and
ψi : M3(Z2[S5]) → M3di

(Z2).

We get

ψ : M3(Z2[S5]) →
M3(Z2) × M12(Z2) × M15(Z2) × M18(Z2) × M15(Z2)
× M12(Z2) × M3(Z2).

However, since char(Z2) | ord(S5), the representations
ϕi, i ∈ {1, . . . , 7} will not be irreducible and ψ will not
be an isomorphism. Because of that we can not use the
method mentioned above.
We will present a method of how to solve the
challenge given in appendix of [6]. In this challenge,
authors presented matrices M , Ma, M b and asked a reader
to find the secret shared key Mab. To do so, we will again
search a′ such that Ma′ = Ma.
The method works as follows:

• we calculate dim(Ker(ψ)) = 78 and denote l = 128,
the smallest power or 2 greater than 78,

• using the method described in [10] we embed
M3(Z2[S5]) into M360(Z2) in order to calculate the
pre-period y of M ; note that we do not need to
compute the period of M ,

• we find b such that ψ(M)y = ψ(M)y+b using the
method mentioned in the previous section,

• this gives us a nilpotent matrix C = My − My+b,
• equation

0 = C128 = M128y − M128y+128b

leads to finding per(M)| 128b of M ,
• since b = 75565 then per(M) = 9672320 which

is period small enough for us to be able to find
a′ = 217183 by means of exhaustive search.

C. Implementation
To support our result, we implemented the attack

in both cases M3(Z7[S5]) and M3(Z2[S5]). We used
Microsoft Visual C++ 2012 with NTL and MPIR
libraries and Wolfram Mathematica 8.
We followed the method presented in [6] and
constructed M ∈ M3(Z7[S5]) as a product
M = M1 · S, where M1 ∈ M3(Z7[S5]) is an invertible
matrix and S is a scalar matrix with an element
s = (3 + g1)(3 + g2)(3 + g3)(3 + g4)(3 + g5)(3 + g6)(5 + h)
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h is a product of two independent cycles of lengths 2
and 3. For our particular choice of the parameters see
[7, Page 15].
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i ∈ {1, . . . , 7} therefore we followed the method presented
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+414872873390037779882720801600m

as a result.
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speed up solving the discrete logarithm problem. One of
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x = im + j, (3)

where m = �
√

n �, i, j ∈ {0, . . . , m − 1}.
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b = gim+j ⇔ bg−im = gj .
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(j,gj) for j ∈ {0, . . . , m − 1}. Baby-steps are followed
by so called giant-steps which calculate values bg−im for
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bx−im = gj

for some i, j ∈ {0, . . . , m − 1}, we have found
x = im + j such that gx = b.
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N = M im+j ⇔ NM−j = M im,
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NM j = M im

for some i ∈ {1, . . . , �n/m�}, j ∈ {1, . . . , m − 1}, we get
x = im − j for which Mx = N holds.
Algorithm 1 shows how the baby-step giant-step works for
the modified Diffie-Hellman protocol according to [6].
The algorithm requires that

Algorithm 1: Baby-step giant-step

Input: M , N ∈ M3 (Z7[S5]), n = |M3 (Z7[S5]) |
Output: x ∈ N, such that Mx = N

m = �
√

n �;
t = �n/m�;
for j = 1, . . . , m − 1 do

Compute NM j ;
Store (j, NM j);

for i = 0, . . . , t do
Compute Mi = M im;
if there exists j such that Mi = NM j then

return im − j.

M im = NM j ⇒ N = M im−j

holds.
Since M does not have to be regular, hence invertible, it
seems that this implication is not obvious. However, if we
consider Jordan canonical forms, we get

(U−1MU)im = U−1NU
(
U−1MU

)j (4)

for basis U . This can be illustrated as



sing 0

0 reg




im

=




sing 0

0 reg




x 


sing 0

0 reg




j

,

where reg denotes a section that appertains to nonzero
eigen values and sing denotes a section that appertains to
zero eigen values. We can see that if N = Mx is large
enough power of M and if m is large enough, we can
illustrate (4) as follows:



0

regim


 =




0

regx







?

regj


 .

Then

M im = NM j

�
regim = regxregj

�
regim−j = regx.

This means that if im − j is large enough and
singim−j = 0, then M im−j = N .
According to [6], the baby-step giant-step algorithm is
not usable for the modified Diffie-Hellman protocol. The
main reason is that this algorithm has huge memory
requirements whilst working over M3(Z7[S5]).
It is obvious that the knowledge of a period of M would
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significantly simplify the situation. Instead of searching
in the whole semigroup M3(Z7[S5]), we could just search
in space of a size per(M). We have shown a method
for computing the period of M in IV-A0c therefore the
baby-step giant-step will be more effective than the
authors of [6] claimed.

VI. Related work
The security of the modified Diffie-Hellman protocol

proposed in [6] was also analysed in [10] and [9].
In [10], A. Myasnikov and A. Ushakov proposed an
embedding of M3(Z7[S5]) into M360(Z7). This embedding,
together with the Menezes-Wu algorithm, allowed the
authors to find the secret shared key using a quantum
computer in polynomial time. This paper proves that the
modified Diffie-Hellman protocol does not belong to the
realm of post-quantum cryptography.
In [9] can be found a method for attacking the
modified protocol which is based on the same core idea as
our method. The authors first constructed an embedding
ψ of M3(Z7[S5]) into M360(Z7) as proposed in [10] and
then they constructed an isomorphism between Im(ψ) and
M3(Z7) × M12(Z7) × M15(Z7) × M18(Z7) × M15(Z7) ×
M12(Z7) × M3(Z7). Having this isomorphism they were
able to retrieve the secret shared by computing the
minimal polynomial of A ∈ Im(ψ). The authors also
worked with M3(Z2[S5]) and solved the challenge given in
appendix of [6]. However, our work is in scope of [7] and
we worked independently from [9].

VII. Conclusion
We have recalled the modified Diffie-Hellman protocol

proposed in [6] which is trying to make the original
Diffie-Hellman protocol suitable for devices with limited
computational power. To do so, the authors of [6] proposed
Mn(Zp[Sm]) as a platform. However, this modification
met the computational costs requirements, it decreased
the security level of the key exchange itself. We have
shown that with help of the theory of symmetric group
representations we can exploit the algebraic properties
of Mn(Zp[Sm]) and construct the secret shared key on
a common computer in feasible time. The same result
was presented in [9]. Consequently, the modified protocol
is not as secure as is claimed in [6] when p > m. Any
improvement of this modification to resist this attack is
not clear. Our brief calculation for m = 5 and p = 2
indicates that choosing the parameters p < m is probably
not sufficient to make the protocol secure.
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