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Abstract - Large MIMO systems are recognized as an effective 

technique for increasing the spectral and energy efficiency of 
wireless networks. The attractiveness of this technique for WLAN 
is that it can be an alternative approach to cell densification for 
providing high data rate wireless access. Here we consider large 
MIMO systems in indoor WLANs for multi-user MIMO (MU-
MIMO) spatial multiplexing in the 2.4 GHz ISM band. The focus 
is on analyzing the behaviors of large MIMO systems with both 
centralized and distributed antenna system (CAS and DAS) ar-
chitectures. The analysis is based on extensive ray-tracing channel 
simulations, as well as an i.i.d. Rayleigh model. The numerical re-
sults show that the optimum capacity can be closely approached 
with both CAS and DAS architectures when the number of Access 
Point (AP) antennas exceeds the users by a few times. DAS is 
found to be superior to CAS in that the required number of an-
tennas is significantly smaller, and especially performs better in 
non-rich scattering channels which is the case of practical chan-
nels reflected by ray-tracing simulations. 

Index Terms – MU-MIMO, large MIMO, centralized antenna 
system, distributed antenna system, WLAN 

 

I. INTRODUCTION 
Large MIMO has been advocated recently as a promising 

technique for next generation wireless networks due to its man-
ifold benefits, especially the potential of a tremendous boost of 
spectral efficiency and energy efficiency [1] [2]. This technique 
brings at least two fundamental changes to the traditional 
MIMO scheme [1]. First, a large number of antennas are em-
ployed at the base station (BS) or access point (AP), say tens to 
hundreds or even more. Traditional MIMO systems typically 
have only a small number, e.g., maximally 8 in the latest WiFi 
standard IEEE 802.11ac (for frequency bands below 6 GHz). 
Potentially, the capacity can be increased multiple times with 
higher order spatial multiplexing in large MIMO. Second, the 
number of BS or AP antennas is much larger than the number 
of co-scheduled mobile stations (STAs), say 10 times more. 
Traditional MIMO systems usually assume a similar or equal 
numbers of transmit and receive antennas. The additional anten-
nas make it possible to use linear precoding to achieve high data 
rate, which reduces the signal processing complexity in high-
dimensional MIMO. Large MIMO has now been recognized as 

a promising technique for next-generation cellular networks or 
5G, however, its use in WLAN is rarely discussed in the litera-
ture at this time. 

The attractiveness of large MIMO for WLAN is that it can be 
an alternative approach for cell densification to provide high 
data rate access, especially for high user density scenarios like 
airport gates, train stations, crowded office buildings, etc. A 
basic problem of cell densification is that the network may have 
degraded performance by intra- and inter-cell interference due 
to poorly-coordinated transmissions. On the contrary, in large 
MIMO, the cooperation of a large number of antennas can 
sharply focus signals onto the intended users and cancel the un-
desired signals in almost all other directions. As a result, not 
only a larger number of parallel spatial streams can be supported 
but also the data rate of each stream can be significantly im-
proved to guarantee the quality-of-service (QoS) for simultane-
ously served users. 

The objective of this paper is to analyze the behavior of large 
MIMO systems in WLAN, and verify the viability of achieving 
the optimum capacity with a reasonable number of antennas for 
multi-user MIMO (MU-MIMO) spatial multiplexing. Unlike 
cellular networks which consider outdoor environments, li-
censed frequency bands, and relatively large cells, WLAN 
mainly aims at indoor environments and applications, and use 
license-free bands. Therefore, the discussions in this paper dif-
fer from the prior work for cellular networks reported in [3] [4] 
[5]. Moreover, [3] and [4] only consider centralized antenna 
system (CAS) architecture, and [5] only uses theoretical channel 
models. Our work differs in another two aspects. First, we con-
sider both CAS and DAS architectures. Second, we use both 
practical and theoretical MIMO channels, to highlight the per-
formance differences in practical and ideal channel conditions. 
The practical indoor wireless channels are simulated by ray-
tracing software, which can characterize large MIMO channels 
with good accuracy as verified in [6]. The theoretical MIMO 
channel model combines the i.i.d. Rayleigh small-scale fading 
model, and the path loss results obtained from ray-tracing sim-
ulations, to obtain the ideal channel condition. Above that, the 
deployment of the antennas is optimized based on the received 
signal strength over the coverage area to better fit antennas into 
the indoor environment. We find that, a large number of STAs 
can be supported simultaneously and achieve the optimum ca-
pacity with a limited number of antennas for both CAS and DAS 
architectures. The results, however, show a significant ad-
vantage of DAS architecture over CAS, especially in practical 
channels. 

The remainder of this paper is organized as follows. Section 
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B. Sum-rate Capacity 
Sum-rate capacity is the total achievable data rate of all the 

co-scheduled STAs (measured in bps/Hz). In this paper, it is 
evaluated under different conditions to give a comprehensive 
view. Specifically, we take into account of the interference-free 
(IF) case, and different precoding techniques including DPC 
(Dirty Paper Coding), ZF (Zero-forcing) and MBF (matched 
beamforming), which are elaborated in the following. 

1) IF 
IF capacity is the best performance that can be achieved if all 

the channel energy to STA k  is delivered to STA k  but with-
out any multi-user interference (MUI), which is usually used as 
a benchmark [1]. With such assumption, the data rate for the k
th STA is given by  
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where kp  is the transmission power allocated for the k th STA, 
which is assumed to be equal for all STAs, so = /k tp P K , for 

=1, ,k K  and tP  is the total transmission power. The sum-
rate is then given by  
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2) DPC 
DPC is the optimum non-linear precoding technique which 

gives the upper bound capacity for a given channel. The sum-
rate is usually given in the following form  

 sum,DPC 2 2

1detlogmax HC
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where P  is a diagonal matrix representing the power allocation 
to the STAs, i.e., 1= diag{ , , }Kp pP , constrained by 

1

K

k k tp P


 . The optimum power allocation can be found by 

the water-filling algorithm [4]. In the high SNR regime, it can 
be approximated by [11]  

 total
sum,DPC 2 2= detlog HP

C
K
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i.e., with equal power allocations to the STAs. 
3) Linear Precoding 

Linear precoding techniques are more favorable in practice 
due to their low complexity. In this paper, we consider ZF and 
MBF, which precode the signal with different objectives. Spe-
cifically, ZF only cancels MUI but neglecting the final SINRs 
of the STAs, and MBF only considers SNR maximization for 
individual STAs but without taking into account MUI. Although 
suboptimal, they are potentially able to achieve the optimum ca-
pacity performance in large MIMO regime, i.e., when 
MN K  (see [1] for more information). 

For linear precoding, we can write the received signal model 
as   

 1/2= H y G WP s n  (7) 
where s  is the information symbol, and W  is the beamform-
ing matrix. Therefore, the SINR of the k th STA is given by  
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The beamforming matrix W  is obtained through the follow-
ing procedure. First, the precoding matrices of MBF and ZF are 
calculated by 

 MBF =W G  (9) 

 1
ZF = ( )H W G G G  (10) 

Then, the columns are normalized to achieve unit power of 
beamforming vectors. Specifically, in the final beamforming 
matrices, ZFW  and MBFW , the columns are obtained by

=k k kw w w . Since for ZF, = 0H
i jh w  for i j , the first 

term of the denominator of the Eq. (8) will be zero.  
Finally, the sum-rate is calculated by 

 sum,ZF/MBF ,ZF/MBF2
=1

= (1 SINR )log
K

k
k

C   (11) 

In addition, equal power allocation is assumed for the linear 
precoders as well in the analysis. 

III. CHANNEL MODELS 
Channel modeling is important for investigating the perfor-

mance of MIMO systems. As already pointed out in [4] [12], 
the channel conditions of the STAs, e.g., line-of-sight (LOS) 
and none-line-of-sight (NLOS), have noticeable effect on the 
achievable data rates. In this paper, both ray-tracing channel 
simulation and an ideal channel model are used. Ray-tracing 
simulation based channel modeling stands for the characteriza-
tion of more practical channels, in contrast to the ideal channel 
condition.  

A. Ray-tracing Simulation 
The ray-tracing simulations are conducted in a 3D ray-tracing 

tool named Radiowave Propagation Simulator (RPS) [13]. To 
make the simulations more scalable, the channel transfer func-
tions are derived with the following steps. First, the locations of 
the 𝑀𝑀  RAUs are optimized according to received signal 
strength. Specifically, we locate the RAUs on 5m grids on the 
ceiling plane of the indoor scenario (see Fig. 2), assuming each 
RAU has a single isotropic antenna and the same transmission 
power. Then, the group of RAU positions that provides the high-
est 5-percentile receive signal power over the entire coverage 
area is selected. The searching algorithm used here is “greedy 
search”, which iteratively adds one RAU to maximize the ob-
jective function (see [14] for more details). A reason why we 
choose this algorithm is that it is deterministic, which yields re-
producible optimization results. Second, the band-limited time-
domain channel impulse responses (CIR) between each RAU 
and each STA position are derived from RPS, along with angu-
lar (departure and arrival angles) and temporary information of 
all the rays. Third, the channels of each sub-antenna array, i.e., 
the antennas on each RAU (organized as a uniform planar ar-
ray), are obtained by adding the array response to the CIRs de-
rived from the last step. See [6] for more explanations which 
also verifies the effectiveness of this approach. Finally, the 
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II provides the system model and the sum-rate capacity metrics 
for the subsequent analysis. Section III presents the channel 
simulation methods with a ray-tracing tool, and the modeling of 
the ideal MIMO channel. Section IV examines the numerical 
results we obtained. Section V concludes the paper and high-
lights remaining important issues that need to be investigated. 

II. SYSTEM MODEL 
 We consider a single cell or single AP WLAN with CAS and 

DAS architectures, illustrated in Fig. 1. For DAS systems, the 
remote antenna units (RAUs) or antenna clusters are typically 
connected by wirelines to the AP. In particular, optical fiber is 
a promising wireline connection that has been advocated in re-
cent years [7]. We denote the number of RAUs, the number of 
antennas per RAU, and the number of co-scheduled single-an-
tenna STAs by M , N and K , respectively. So the total number 
of AP antennas is MN . CAS is taken as a special case that 

=1M , then N  equals the total number of antennas.   

 
(a) Centralized antenna system 

 

 
(b) Distributed antenna system 

Fig. 1 Architecture of CAS and DAS for WLAN. 

In a CAS, the antennas of an AP are co-located, typically with 
half-wavelength spacing between individual antennas. As a re-
sult, the antennas of the AP usually share the same large scale 
fading for the same user, and small scale fading variations are 
correlated across the antennas. The channel correlation renders 
the MIMO channel of low rank which limits the spatial multi-
plexing gain. So in traditional MIMO systems, user scheduling 
is used to select the users that are well separated spatially, so as 
to obtain more “favorable" MIMO channels. This requirement 
is however much relaxed in large MIMO [1].  

In a DAS, the antennas are clustered in the RAUs, and the 
RAUs are scattered over the coverage area. The antenna sepa-
ration in a RAU is small, typically with half-wavelength, but the 
RAUs are separated by distances of at least several meters. The 
MIMO system can then benefit from two facts. First, the macro-
diversity due to the large separation of RAUs which reduces the 
average path loss to the users thus improves the average re-
ceived signal strength. Second, the micro-diversity improves the 
independence of small scale fading across the antennas at dif-

ferent RAUs, which lowers MIMO channel correlation. There-
fore, the DAS architecture is superior to the CAS architecture 
for traditional MIMO systems, which has been confirmed in the 
studies like [8]. Evidently, the cost is the higher complexity of 
the infrastructure. 

The following assumptions are made for our modeling and 
analysis: 

 The 𝐾𝐾  co-scheduled STAs are selected by random 
scheduling, i.e., without optimization based on the spa-
tial separability of the STAs, since large MIMO poten-
tially can achieve the optimum performance without 
sophisticated user scheduling as in traditional MIMO 
systems. In addition, the STAs are uniformly distributed 
over the entire area. We leave the discussions on non-
uniform distributions for our future research.  

 We assume global sum power constraint over all the an-
tennas. This assumption leads to a much lower complex-
ity in computing the precoding matrix [9]. In addition to 
that, we also argue that the transmission power of the 
antennas is extremely low in large MIMO systems due 
to the high beamforming gain with the numerous anten-
nas and the reduced path loss in DAS systems especially 
for indoor WLAN setups, which makes the assumption 
also reasonable in practice.  

 To simplify the analysis, we assume the backhaul con-
nection in the DAS architecture is ideal. For example, 
delays across the RAUs are assumed equal and the band-
width is sufficiently large; optical fiber distortions are 
already compensated [10]. In addition, the constraints 
like channel estimation accuracy and power regulations 
on EIRP, are not considered in order to keep a clear fo-
cus in the analysis.   

A. Signal Model 
The signal model is given in the following for block-fading 

narrow-band channels. The block-fading channel model is suit-
able for indoor channels due to the slow user mobility and phys-
ical environment changes. The extension of the narrow band 
model to OFDM systems is straightforward. In the numerical 
analysis, we will consider OFDM modulation, and use equal 
power allocation to the subcarriers. In addition, the models are 
given assuming perfect channel knowledge is known.  

Denote the full channel matrix by 1= [ , , ]KG g g , where 
, =1, ,k k Kg  is the channel vector of the k th STA. The 

channel coefficients consist of both large scale fading and small 
scale fading. Specifically,  

 1 1= , ,
TT T

k k Mk Mk   kg h h  (1) 

where mk  is the large scale fading and mkh  is the small scale 
fading vector between the m th RAU and the k th STA, respec-
tively. The received signal at the STAs is  

 = H y G x n  (2) 
where x  is the precoded signal vector, n  is the Gaussian noise 
vector with i.i.d. elements following 2(0, )  and 2  is the 
noise power. 
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B. Sum-rate Capacity 
Sum-rate capacity is the total achievable data rate of all the 

co-scheduled STAs (measured in bps/Hz). In this paper, it is 
evaluated under different conditions to give a comprehensive 
view. Specifically, we take into account of the interference-free 
(IF) case, and different precoding techniques including DPC 
(Dirty Paper Coding), ZF (Zero-forcing) and MBF (matched 
beamforming), which are elaborated in the following. 
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IF capacity is the best performance that can be achieved if all 

the channel energy to STA k  is delivered to STA k  but with-
out any multi-user interference (MUI), which is usually used as 
a benchmark [1]. With such assumption, the data rate for the k
th STA is given by  

 
2

IF, 2 2= 1log k k
k

p
R


 
 

 

g
 (3) 

where kp  is the transmission power allocated for the k th STA, 
which is assumed to be equal for all STAs, so = /k tp P K , for 

=1, ,k K  and tP  is the total transmission power. The sum-
rate is then given by  

 sum,IF IF,
=1

=
K

k
k

C R  (4) 

2) DPC 
DPC is the optimum non-linear precoding technique which 

gives the upper bound capacity for a given channel. The sum-
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be approximated by [11]  
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i.e., with equal power allocations to the STAs. 
3) Linear Precoding 

Linear precoding techniques are more favorable in practice 
due to their low complexity. In this paper, we consider ZF and 
MBF, which precode the signal with different objectives. Spe-
cifically, ZF only cancels MUI but neglecting the final SINRs 
of the STAs, and MBF only considers SNR maximization for 
individual STAs but without taking into account MUI. Although 
suboptimal, they are potentially able to achieve the optimum ca-
pacity performance in large MIMO regime, i.e., when 
MN K  (see [1] for more information). 

For linear precoding, we can write the received signal model 
as   

 1/2= H y G WP s n  (7) 
where s  is the information symbol, and W  is the beamform-
ing matrix. Therefore, the SINR of the k th STA is given by  
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The beamforming matrix W  is obtained through the follow-
ing procedure. First, the precoding matrices of MBF and ZF are 
calculated by 

 MBF =W G  (9) 

 1
ZF = ( )H W G G G  (10) 

Then, the columns are normalized to achieve unit power of 
beamforming vectors. Specifically, in the final beamforming 
matrices, ZFW  and MBFW , the columns are obtained by

=k k kw w w . Since for ZF, = 0H
i jh w  for i j , the first 

term of the denominator of the Eq. (8) will be zero.  
Finally, the sum-rate is calculated by 
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In addition, equal power allocation is assumed for the linear 
precoders as well in the analysis. 

III. CHANNEL MODELS 
Channel modeling is important for investigating the perfor-

mance of MIMO systems. As already pointed out in [4] [12], 
the channel conditions of the STAs, e.g., line-of-sight (LOS) 
and none-line-of-sight (NLOS), have noticeable effect on the 
achievable data rates. In this paper, both ray-tracing channel 
simulation and an ideal channel model are used. Ray-tracing 
simulation based channel modeling stands for the characteriza-
tion of more practical channels, in contrast to the ideal channel 
condition.  

A. Ray-tracing Simulation 
The ray-tracing simulations are conducted in a 3D ray-tracing 

tool named Radiowave Propagation Simulator (RPS) [13]. To 
make the simulations more scalable, the channel transfer func-
tions are derived with the following steps. First, the locations of 
the 𝑀𝑀  RAUs are optimized according to received signal 
strength. Specifically, we locate the RAUs on 5m grids on the 
ceiling plane of the indoor scenario (see Fig. 2), assuming each 
RAU has a single isotropic antenna and the same transmission 
power. Then, the group of RAU positions that provides the high-
est 5-percentile receive signal power over the entire coverage 
area is selected. The searching algorithm used here is “greedy 
search”, which iteratively adds one RAU to maximize the ob-
jective function (see [14] for more details). A reason why we 
choose this algorithm is that it is deterministic, which yields re-
producible optimization results. Second, the band-limited time-
domain channel impulse responses (CIR) between each RAU 
and each STA position are derived from RPS, along with angu-
lar (departure and arrival angles) and temporary information of 
all the rays. Third, the channels of each sub-antenna array, i.e., 
the antennas on each RAU (organized as a uniform planar ar-
ray), are obtained by adding the array response to the CIRs de-
rived from the last step. See [6] for more explanations which 
also verifies the effectiveness of this approach. Finally, the 
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the ideal MIMO channel. Section IV examines the numerical 
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a promising wireline connection that has been advocated in re-
cent years [7]. We denote the number of RAUs, the number of 
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Fig. 1 Architecture of CAS and DAS for WLAN. 

In a CAS, the antennas of an AP are co-located, typically with 
half-wavelength spacing between individual antennas. As a re-
sult, the antennas of the AP usually share the same large scale 
fading for the same user, and small scale fading variations are 
correlated across the antennas. The channel correlation renders 
the MIMO channel of low rank which limits the spatial multi-
plexing gain. So in traditional MIMO systems, user scheduling 
is used to select the users that are well separated spatially, so as 
to obtain more “favorable" MIMO channels. This requirement 
is however much relaxed in large MIMO [1].  

In a DAS, the antennas are clustered in the RAUs, and the 
RAUs are scattered over the coverage area. The antenna sepa-
ration in a RAU is small, typically with half-wavelength, but the 
RAUs are separated by distances of at least several meters. The 
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diversity due to the large separation of RAUs which reduces the 
average path loss to the users thus improves the average re-
ceived signal strength. Second, the micro-diversity improves the 
independence of small scale fading across the antennas at dif-

ferent RAUs, which lowers MIMO channel correlation. There-
fore, the DAS architecture is superior to the CAS architecture 
for traditional MIMO systems, which has been confirmed in the 
studies like [8]. Evidently, the cost is the higher complexity of 
the infrastructure. 

The following assumptions are made for our modeling and 
analysis: 

 The 𝐾𝐾  co-scheduled STAs are selected by random 
scheduling, i.e., without optimization based on the spa-
tial separability of the STAs, since large MIMO poten-
tially can achieve the optimum performance without 
sophisticated user scheduling as in traditional MIMO 
systems. In addition, the STAs are uniformly distributed 
over the entire area. We leave the discussions on non-
uniform distributions for our future research.  

 We assume global sum power constraint over all the an-
tennas. This assumption leads to a much lower complex-
ity in computing the precoding matrix [9]. In addition to 
that, we also argue that the transmission power of the 
antennas is extremely low in large MIMO systems due 
to the high beamforming gain with the numerous anten-
nas and the reduced path loss in DAS systems especially 
for indoor WLAN setups, which makes the assumption 
also reasonable in practice.  

 To simplify the analysis, we assume the backhaul con-
nection in the DAS architecture is ideal. For example, 
delays across the RAUs are assumed equal and the band-
width is sufficiently large; optical fiber distortions are 
already compensated [10]. In addition, the constraints 
like channel estimation accuracy and power regulations 
on EIRP, are not considered in order to keep a clear fo-
cus in the analysis.   

A. Signal Model 
The signal model is given in the following for block-fading 

narrow-band channels. The block-fading channel model is suit-
able for indoor channels due to the slow user mobility and phys-
ical environment changes. The extension of the narrow band 
model to OFDM systems is straightforward. In the numerical 
analysis, we will consider OFDM modulation, and use equal 
power allocation to the subcarriers. In addition, the models are 
given assuming perfect channel knowledge is known.  

Denote the full channel matrix by 1= [ , , ]KG g g , where 
, =1, ,k k Kg  is the channel vector of the k th STA. The 

channel coefficients consist of both large scale fading and small 
scale fading. Specifically,  
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where mk  is the large scale fading and mkh  is the small scale 
fading vector between the m th RAU and the k th STA, respec-
tively. The received signal at the STAs is  
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where x  is the precoded signal vector, n  is the Gaussian noise 
vector with i.i.d. elements following 2(0, )  and 2  is the 
noise power. 
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can approximate the performance of DPC for a large 𝑀𝑀𝑀𝑀, which 
confirms that simple linear precoders can provide close-to-opti-
mum performance. MBF performs much poorer even when 𝑀𝑀𝑀𝑀 
is very large, although theoretically it is also optimal under con-
dition 𝑀𝑀𝑀𝑀 → ∞. This suggests that precoders considering MUI 
mitigation should be more effective in practice, especially for 
the low frequencies, since the required antenna array size is 
much smaller. 

Moreover, the outcome in ray-tracing channel is poorer than 
in i.i.d. Rayleigh channel. However, the gaps look smaller in 
DAS when we compare Fig. 3a and Fig. 3b. We further discuss 
this in the next subsection about the effect of antenna distribu-
tions. 

B. Capacity Versus Antenna Distribution 
Now we consider using the same number of antennas in total 

(i.e., 𝑀𝑀𝑀𝑀 is constant), to investigate the performance changes 
with different levels of antenna distribution. Specifically, differ-
ent numbers of RAUs, 𝑀𝑀, are considered with optimized place-
ment as we mentioned earlier. The other parameters are held the 
same. The number of STAs is 𝐾𝐾 =16.  Fig. 4 shows the results 

for 𝑀𝑀𝑀𝑀=64 and 256, respectively.  
It can be seen from the figures that a higher distribution level 

benefits the network from several perspectives. First, the overall 
sum-rates are increased. Second, the differences of linear pre-
coders in comparison with DPC and IF are decreased. Third, the 
sum-rate gaps between ray-tracing channel and the ideal i.i.d. 
channel are smaller. The overall benefit is a compound effect of 
the macro- and the micro-diversity offered by DAS, which sug-
gests great advantages of DAS over CAS.  

Another point is that, the improvements saturate as 𝑀𝑀  in-
creases. From the results, we see that 𝑀𝑀=16 is already a satis-
factory level. This is interesting for practice since it is not 
necessary to make all antennas distributed over the coverage 
area to get the best performance, while a small 𝑀𝑀 can offer sig-
nificant gains. 

C. Capacity Versus Number of Co-scheduled STAs 
Traditionally, the number of STAs 𝐾𝐾 that can be supported 

simultaneously depends on the number of antennas at the AP. 
So, for large MIMO systems, the potential number of co-sched-
uled STAs is also large. However, as it is known that, to obtain 
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Fig. 3 Sum-rates versus total number of antennas with different 
configurations. 
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Fig. 4 Sum-rates versus the number of RAUs with the same total number of 
antennas.  
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channel transfer functions on the subcarrier are derived by ap-
plying Fast Fourier Transform (FFT) on the CIRs of all anten-
nas.  

The selected scenario is a floor of the Electrical Engineering 
(Flux) building of Eindhoven University of Technology where 
most of the rooms are for lectures and laboratories, of dimension 
100 m × 40 m × 4 m, which is illustrated in Fig. 2. The main 
objects considered in the ray-tracing simulations are the walls, 
floor and ceiling. The walls are plastered, and ceilings and floors 
are concrete, typical materials of large surfaces of office build-
ings.   

B. Ideal Channel Model 
The wireless channel model is, as usual, divided into large 

scale fading and small scale fading. Here the small scale fading 
across the antennas at an RAU for an STA is described by the 
i.i.d. Rayleigh fading model. I.i.d. Rayleigh fading model 
represents the physical environments that are rich in scatters, 
which somehow results in the ideal channel condition for multi-
user spatial multiplexing [3], which results in a capacity upper 
bound. To be consistent with ray-tracing channel simulation, we 
have to force the receive signal power between any pair of STA 
and RAU at the subcarriers to be the same. Therefore, we derive 
the the ideal channel through the following procedure. 

First, we denote the average channel gain between the m th 
RAU and the k th STA from ray-tracing channel simulation by 

mk , which is obtained by the following normalization 
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where F  is Frobenius norm. RT[ ]mk lg  is the channel vector on 
the l th subcarrier, and =1, ,l L  (RT is short for ray-tracing). 
As a result, the small scale fading RRT RT T[ ] = [ ]mk mk mkl l h g  will 
have unit average power over all the N  antennas and L  
subcarriers. Note that this channel gain is obtained from an 
instantaneous channel, which is different from the common 
large scale fading factor derived by long-term average. 

Then, we denote the small scale fading of i.i.d. Rayleigh 
channel as IID[ ]mk lh , where the elements follow i.i.d. (0,1) . 
It is then normalized by 
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to obtain unit average power over all the antennas and 
subcarriers. 

Finally, the i.i.d. Rayleigh MIMO channel used for analysis 
is derived by 

 IID IIDRT[ ] = [ ]mkmk mkl lg h  (14) 
As a result, the ray-tracing channel RT[ ]mk lg  and i.i.d. Rayleigh 
channel IID[ ]mk lg  will give the same receive power over all 
subcarriers provided the same total transmission power. The 
reader can refer to [4] for more details about channel 
normalization techniques. 

IV. NUMERICAL RESULTS 
This section presents the numerical results based on the above 

models to analyze the influences of different parameters on the 
sum-rate. We consider the antenna system architectures, the pre-
coding techniques and the physical channels. We try to seek in-
sights for the following questions: (1) how many antennas are 
needed to support a certain number of STAs (2) how differently 
does large MIMO behave under practical and ideal channel con-
ditions (3) what is the performance difference between CAS and 
DAS architectures (4) how do the precoding techniques per-
form. These questions are interesting for practical implementa-
tions.  

The common simulation parameters are given in Table I. 

TABLE I SIMULATION PARAMETERS 

Frequency 2.4 GHz 
Bandwidth 20 MHz 
Number of subcarriers 64 
Background noise -174 dBm/Hz 
Noise figure 10 dB 
Transmission power 𝑃𝑃0=20 dBm (equal allocation to subcarriers) 
Scenario 100 m×40 m× 4 m (STAs at 1 m height) 
 

A. Capacity Versus Number of AP Antennas 
We first analyze the influence of the antenna array sizes on 

the system performance. We consider the CAS architecture (i.e., 
𝑀𝑀=1), and a DAS with 𝑀𝑀=4, and 𝐾𝐾=16. For the CAS, the aver-
age SNR is around 25dB, thus ensure most STAs are in high-
SNR regime. The results are given in Fig. 3. (In all the figures, 
RT is short for ray-tracing, and IID for i.i.d. Rayleigh channel). 
The observations are summarized in the following.  

The average IF capacity is stable due to the power assumption 
given in Section II. On the contrary, DPC, ZF and MBF all ex-
perience dramatic improvements when 𝑀𝑀𝑀𝑀 increases. The av-
erage capacity of the DAS is higher due to stronger received 
signal strength.  

DPC, ZF, and MBF, provide data rates below IF case but tend 
to approach it as 𝑀𝑀𝑀𝑀 becomes larger. For example, for CAS in 
i.i.d. Rayleigh channel, DPC and ZF tightly approximate IF 
when 𝑀𝑀𝑀𝑀 ≥ 128, i.e., around 8 times of 𝐾𝐾. The gaps are actu-
ally larger in ray-tracing channels. So, in order to achieve a sim-
ilar data rate as in i.i.d. channels, many more antennas are 
needed. 

The performance differences among the precoders also grad-
ually vanish as 𝑀𝑀𝑀𝑀 increases. The interesting finding is that ZF 

 
Fig. 2 Simulation scenario with an example of four RAUs deployed at optimized 
positions, the dots in the figure. The color map shows the received signal strength 
when assuming 0 dBm transmission power at each RAU. 



Sum-rate Performance of Large Centralized and  
Distributed MU-MIMO Systems in Indoor WLAN

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2015 • VOLUME VII • NUMBER 3 21

 5 

can approximate the performance of DPC for a large 𝑀𝑀𝑀𝑀, which 
confirms that simple linear precoders can provide close-to-opti-
mum performance. MBF performs much poorer even when 𝑀𝑀𝑀𝑀 
is very large, although theoretically it is also optimal under con-
dition 𝑀𝑀𝑀𝑀 → ∞. This suggests that precoders considering MUI 
mitigation should be more effective in practice, especially for 
the low frequencies, since the required antenna array size is 
much smaller. 

Moreover, the outcome in ray-tracing channel is poorer than 
in i.i.d. Rayleigh channel. However, the gaps look smaller in 
DAS when we compare Fig. 3a and Fig. 3b. We further discuss 
this in the next subsection about the effect of antenna distribu-
tions. 

B. Capacity Versus Antenna Distribution 
Now we consider using the same number of antennas in total 

(i.e., 𝑀𝑀𝑀𝑀 is constant), to investigate the performance changes 
with different levels of antenna distribution. Specifically, differ-
ent numbers of RAUs, 𝑀𝑀, are considered with optimized place-
ment as we mentioned earlier. The other parameters are held the 
same. The number of STAs is 𝐾𝐾 =16.  Fig. 4 shows the results 

for 𝑀𝑀𝑀𝑀=64 and 256, respectively.  
It can be seen from the figures that a higher distribution level 

benefits the network from several perspectives. First, the overall 
sum-rates are increased. Second, the differences of linear pre-
coders in comparison with DPC and IF are decreased. Third, the 
sum-rate gaps between ray-tracing channel and the ideal i.i.d. 
channel are smaller. The overall benefit is a compound effect of 
the macro- and the micro-diversity offered by DAS, which sug-
gests great advantages of DAS over CAS.  

Another point is that, the improvements saturate as 𝑀𝑀  in-
creases. From the results, we see that 𝑀𝑀=16 is already a satis-
factory level. This is interesting for practice since it is not 
necessary to make all antennas distributed over the coverage 
area to get the best performance, while a small 𝑀𝑀 can offer sig-
nificant gains. 

C. Capacity Versus Number of Co-scheduled STAs 
Traditionally, the number of STAs 𝐾𝐾 that can be supported 

simultaneously depends on the number of antennas at the AP. 
So, for large MIMO systems, the potential number of co-sched-
uled STAs is also large. However, as it is known that, to obtain 
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Fig. 3 Sum-rates versus total number of antennas with different 
configurations. 
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channel transfer functions on the subcarrier are derived by ap-
plying Fast Fourier Transform (FFT) on the CIRs of all anten-
nas.  

The selected scenario is a floor of the Electrical Engineering 
(Flux) building of Eindhoven University of Technology where 
most of the rooms are for lectures and laboratories, of dimension 
100 m × 40 m × 4 m, which is illustrated in Fig. 2. The main 
objects considered in the ray-tracing simulations are the walls, 
floor and ceiling. The walls are plastered, and ceilings and floors 
are concrete, typical materials of large surfaces of office build-
ings.   

B. Ideal Channel Model 
The wireless channel model is, as usual, divided into large 

scale fading and small scale fading. Here the small scale fading 
across the antennas at an RAU for an STA is described by the 
i.i.d. Rayleigh fading model. I.i.d. Rayleigh fading model 
represents the physical environments that are rich in scatters, 
which somehow results in the ideal channel condition for multi-
user spatial multiplexing [3], which results in a capacity upper 
bound. To be consistent with ray-tracing channel simulation, we 
have to force the receive signal power between any pair of STA 
and RAU at the subcarriers to be the same. Therefore, we derive 
the the ideal channel through the following procedure. 

First, we denote the average channel gain between the m th 
RAU and the k th STA from ray-tracing channel simulation by 

mk , which is obtained by the following normalization 
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where F  is Frobenius norm. RT[ ]mk lg  is the channel vector on 
the l th subcarrier, and =1, ,l L  (RT is short for ray-tracing). 
As a result, the small scale fading RRT RT T[ ] = [ ]mk mk mkl l h g  will 
have unit average power over all the N  antennas and L  
subcarriers. Note that this channel gain is obtained from an 
instantaneous channel, which is different from the common 
large scale fading factor derived by long-term average. 

Then, we denote the small scale fading of i.i.d. Rayleigh 
channel as IID[ ]mk lh , where the elements follow i.i.d. (0,1) . 
It is then normalized by 
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to obtain unit average power over all the antennas and 
subcarriers. 

Finally, the i.i.d. Rayleigh MIMO channel used for analysis 
is derived by 

 IID IIDRT[ ] = [ ]mkmk mkl lg h  (14) 
As a result, the ray-tracing channel RT[ ]mk lg  and i.i.d. Rayleigh 
channel IID[ ]mk lg  will give the same receive power over all 
subcarriers provided the same total transmission power. The 
reader can refer to [4] for more details about channel 
normalization techniques. 

IV. NUMERICAL RESULTS 
This section presents the numerical results based on the above 

models to analyze the influences of different parameters on the 
sum-rate. We consider the antenna system architectures, the pre-
coding techniques and the physical channels. We try to seek in-
sights for the following questions: (1) how many antennas are 
needed to support a certain number of STAs (2) how differently 
does large MIMO behave under practical and ideal channel con-
ditions (3) what is the performance difference between CAS and 
DAS architectures (4) how do the precoding techniques per-
form. These questions are interesting for practical implementa-
tions.  

The common simulation parameters are given in Table I. 

TABLE I SIMULATION PARAMETERS 

Frequency 2.4 GHz 
Bandwidth 20 MHz 
Number of subcarriers 64 
Background noise -174 dBm/Hz 
Noise figure 10 dB 
Transmission power 𝑃𝑃0=20 dBm (equal allocation to subcarriers) 
Scenario 100 m×40 m× 4 m (STAs at 1 m height) 
 

A. Capacity Versus Number of AP Antennas 
We first analyze the influence of the antenna array sizes on 

the system performance. We consider the CAS architecture (i.e., 
𝑀𝑀=1), and a DAS with 𝑀𝑀=4, and 𝐾𝐾=16. For the CAS, the aver-
age SNR is around 25dB, thus ensure most STAs are in high-
SNR regime. The results are given in Fig. 3. (In all the figures, 
RT is short for ray-tracing, and IID for i.i.d. Rayleigh channel). 
The observations are summarized in the following.  

The average IF capacity is stable due to the power assumption 
given in Section II. On the contrary, DPC, ZF and MBF all ex-
perience dramatic improvements when 𝑀𝑀𝑀𝑀 increases. The av-
erage capacity of the DAS is higher due to stronger received 
signal strength.  

DPC, ZF, and MBF, provide data rates below IF case but tend 
to approach it as 𝑀𝑀𝑀𝑀 becomes larger. For example, for CAS in 
i.i.d. Rayleigh channel, DPC and ZF tightly approximate IF 
when 𝑀𝑀𝑀𝑀 ≥ 128, i.e., around 8 times of 𝐾𝐾. The gaps are actu-
ally larger in ray-tracing channels. So, in order to achieve a sim-
ilar data rate as in i.i.d. channels, many more antennas are 
needed. 

The performance differences among the precoders also grad-
ually vanish as 𝑀𝑀𝑀𝑀 increases. The interesting finding is that ZF 

 
Fig. 2 Simulation scenario with an example of four RAUs deployed at optimized 
positions, the dots in the figure. The color map shows the received signal strength 
when assuming 0 dBm transmission power at each RAU. 
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low-level MUI, user scheduling and complex precoding are 
needed. The desirable strategy in large MIMO is to employ a 
much larger number of antennas than parallel spatial streams, in 
another word, let 𝑀𝑀𝑀𝑀 ≫ 𝐾𝐾 [1]. As a result, low-complexity pre-
coding can be used to get good performance. It is then interest-
ing to know how large the ratio of 𝑀𝑀𝑀𝑀/𝐾𝐾 should be. It has been 
reported in, e.g., [1], that the number of base station antennas 
should be at least 10 times the number of single-antenna STAs 
in CAS. The above analysis in this paper also supports this con-
clusion. However, for a DAS architecture, the statement does 
not hold. What we show later is that the total number of anten-
nas needed in DAS is actually significantly less.  

For the analysis in this subsection, we assume 𝑀𝑀𝑀𝑀=256, and, 
𝑀𝑀 =1 (CAS) and 𝑀𝑀=16 (DAS). We vary 𝐾𝐾, to see how the sum-
rate capacity changes. The other parameters are kept the same. 
The results are given in Fig. 5.  

We can see that rather different results are obtained for CAS 
and DAS. Many more STAs can be supported in DAS than in 
CAS to approximately achieve the optimum IF capacity. The 
superiority is especially significant in the practical ray-tracing 
channels. For example, even when 𝐾𝐾=64, the STAs can still 
achieve close-to-optimum performance in DAS, which is not 
the case in CAS.  

One major reason for the poor performance of CAS for large 
𝐾𝐾 is due to the compact antenna array which results in corre-
lated channels when STAs are in line-of-sight condition and a 
poor-scattering channel is experienced. We can see that in i.i.d. 
Rayleigh channel, CAS still performs well but it is poor in ray-
tracing channels. On the contrary, for DAS, the performance 
tends to be similar as in i.i.d. channels. 

Some additional points are necessary to mention. We note 
that, the targeted 𝐾𝐾 in a practical system may depend on other 
factors. For example, channel training overheads and the num-
ber of pilot sequences may limit 𝐾𝐾 to a smaller number. For that 
reason, the CAS architecture may be sufficient to get the target 
performance as well. In addition, other considerations like the 
antenna array structure (e.g., cylinder array) and user schedul-
ing, should be helpful for improving the performance. This is 
however out of the scope of this paper. So, the two architectures 
are equivalent for certain cases. The difference is that, to 
achieve the same performance, a CAS requires a sufficiently 
large antenna array, which turns into a large physical size which 
could lead to practical problems, e.g., form factor and installa-
tion issues. A DAS, on the other hand, needs fewer antennas, 
but requires a more sophisticated infrastructure to support an-
tenna distributions, leading to higher installation cost. Indeed, 
the DAS architecture in particular with a higher distribution 
level, surpasses CAS significantly in terms of MU-MIMO ca-
pacity.  

V. CONCLUSIONS AND FUTURE WORK 
This paper analyzes the behavior of MU-MIMO with large 

antenna arrays in indoor WLAN, operating in the 2.4 GHz ISM 
band. We have considered the important factors related to the 
sum-rate performance, including precoding techniques, channel 
characteristics, and especially antenna configuration and de-
ployment.  

Although theoretically the upper bound capacity can be 
achieved by simple linear precoders as the number of antennas 
𝑀𝑀𝑀𝑀 → ∞, their performance differences are significant when 
𝑀𝑀𝑀𝑀 is not infinite but assumes practical values, e.g., in the order 
of hundreds. Regarding precoding, ZF offers much better per-
formance than MBF. This suggests MUI suppression is neces-
sary in the precoding process, which should be considered for 
designing precoding techniques.  

We also found that the DAS architecture significantly sur-
passes CAS in terms of capacity provisioning to a larger number 
of co-scheduled STAs. We can interpret that from several as-
pects. First, less antennas are needed with a DAS architecture, 
which is preferable in practice in terms of cost and complexity. 
Second, a higher antenna distribution level leads to better per-
formance, but in fact a moderate level is satisfactory. For exam-
ple, a balancing point in our analysis is 𝑀𝑀 = 16, which results 
in an inter-RAU distance of around 16 m. Third, DAS is espe-
cially superior to CAS in practical channels due to the limited 
scattering and LOS conditions. This also means that in outdoor 
channels where the scattering is usually poorer than in indoor, 
DAS should provide a higher performance gain. 

 
(a) CAS 

 
(b) DAS (𝑀𝑀 = 16) 

Fig. 5 Sum-rates versus the number of co-scheduled STAs in CAS and DAS. 
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There are several important points we did not address and re-
quire further investigation. First, the effect of non-uniform user 
distributions, e.g., users are clustered at some locations. Second, 
one needs to consider multiple-AP cases, especially when inter-
cell interference may exist due to the higher frequency reuse 
factor. This requires more sophisticated simulation of the wire-
less channels, and media access mechanisms. Third, one should 
take into account per antenna peak or average power constraints, 
or constant envelop transmission. Especially constant envelop 
transmission is currently a hot research topic for large MIMO 
systems [15]. Fourth, the backhaul-related issues for DAS may 
play a role, e.g., the optical fiber distortion needs to be consid-
ered.  
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low-level MUI, user scheduling and complex precoding are 
needed. The desirable strategy in large MIMO is to employ a 
much larger number of antennas than parallel spatial streams, in 
another word, let 𝑀𝑀𝑀𝑀 ≫ 𝐾𝐾 [1]. As a result, low-complexity pre-
coding can be used to get good performance. It is then interest-
ing to know how large the ratio of 𝑀𝑀𝑀𝑀/𝐾𝐾 should be. It has been 
reported in, e.g., [1], that the number of base station antennas 
should be at least 10 times the number of single-antenna STAs 
in CAS. The above analysis in this paper also supports this con-
clusion. However, for a DAS architecture, the statement does 
not hold. What we show later is that the total number of anten-
nas needed in DAS is actually significantly less.  

For the analysis in this subsection, we assume 𝑀𝑀𝑀𝑀=256, and, 
𝑀𝑀 =1 (CAS) and 𝑀𝑀=16 (DAS). We vary 𝐾𝐾, to see how the sum-
rate capacity changes. The other parameters are kept the same. 
The results are given in Fig. 5.  

We can see that rather different results are obtained for CAS 
and DAS. Many more STAs can be supported in DAS than in 
CAS to approximately achieve the optimum IF capacity. The 
superiority is especially significant in the practical ray-tracing 
channels. For example, even when 𝐾𝐾=64, the STAs can still 
achieve close-to-optimum performance in DAS, which is not 
the case in CAS.  

One major reason for the poor performance of CAS for large 
𝐾𝐾 is due to the compact antenna array which results in corre-
lated channels when STAs are in line-of-sight condition and a 
poor-scattering channel is experienced. We can see that in i.i.d. 
Rayleigh channel, CAS still performs well but it is poor in ray-
tracing channels. On the contrary, for DAS, the performance 
tends to be similar as in i.i.d. channels. 

Some additional points are necessary to mention. We note 
that, the targeted 𝐾𝐾 in a practical system may depend on other 
factors. For example, channel training overheads and the num-
ber of pilot sequences may limit 𝐾𝐾 to a smaller number. For that 
reason, the CAS architecture may be sufficient to get the target 
performance as well. In addition, other considerations like the 
antenna array structure (e.g., cylinder array) and user schedul-
ing, should be helpful for improving the performance. This is 
however out of the scope of this paper. So, the two architectures 
are equivalent for certain cases. The difference is that, to 
achieve the same performance, a CAS requires a sufficiently 
large antenna array, which turns into a large physical size which 
could lead to practical problems, e.g., form factor and installa-
tion issues. A DAS, on the other hand, needs fewer antennas, 
but requires a more sophisticated infrastructure to support an-
tenna distributions, leading to higher installation cost. Indeed, 
the DAS architecture in particular with a higher distribution 
level, surpasses CAS significantly in terms of MU-MIMO ca-
pacity.  

V. CONCLUSIONS AND FUTURE WORK 
This paper analyzes the behavior of MU-MIMO with large 

antenna arrays in indoor WLAN, operating in the 2.4 GHz ISM 
band. We have considered the important factors related to the 
sum-rate performance, including precoding techniques, channel 
characteristics, and especially antenna configuration and de-
ployment.  

Although theoretically the upper bound capacity can be 
achieved by simple linear precoders as the number of antennas 
𝑀𝑀𝑀𝑀 → ∞, their performance differences are significant when 
𝑀𝑀𝑀𝑀 is not infinite but assumes practical values, e.g., in the order 
of hundreds. Regarding precoding, ZF offers much better per-
formance than MBF. This suggests MUI suppression is neces-
sary in the precoding process, which should be considered for 
designing precoding techniques.  

We also found that the DAS architecture significantly sur-
passes CAS in terms of capacity provisioning to a larger number 
of co-scheduled STAs. We can interpret that from several as-
pects. First, less antennas are needed with a DAS architecture, 
which is preferable in practice in terms of cost and complexity. 
Second, a higher antenna distribution level leads to better per-
formance, but in fact a moderate level is satisfactory. For exam-
ple, a balancing point in our analysis is 𝑀𝑀 = 16, which results 
in an inter-RAU distance of around 16 m. Third, DAS is espe-
cially superior to CAS in practical channels due to the limited 
scattering and LOS conditions. This also means that in outdoor 
channels where the scattering is usually poorer than in indoor, 
DAS should provide a higher performance gain. 

 
(a) CAS 

 
(b) DAS (𝑀𝑀 = 16) 

Fig. 5 Sum-rates versus the number of co-scheduled STAs in CAS and DAS. 
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There are several important points we did not address and re-
quire further investigation. First, the effect of non-uniform user 
distributions, e.g., users are clustered at some locations. Second, 
one needs to consider multiple-AP cases, especially when inter-
cell interference may exist due to the higher frequency reuse 
factor. This requires more sophisticated simulation of the wire-
less channels, and media access mechanisms. Third, one should 
take into account per antenna peak or average power constraints, 
or constant envelop transmission. Especially constant envelop 
transmission is currently a hot research topic for large MIMO 
systems [15]. Fourth, the backhaul-related issues for DAS may 
play a role, e.g., the optical fiber distortion needs to be consid-
ered.  
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Abstract – The end-to-end throughput in single flow multi-hop 
Ad Hoc networks decays rapidly with path length. Along the 
path, the success rate of delivering packets towards the 
destination decreases due to higher contention, interference, 
limited buffer size and limited shared bandwidth constraints. 
In such environments the queues fill up faster in nodes closer 
to the source than in the nodes nearer the destination. In order 
to reduce buffer overflow and improve throughput for a 
saturated network, this paper introduces a new MAC protocol 
named Dynamic Queue Utilization Based Medium Access 
Control (DQUB-MAC). The protocol aims to prioritise access 
to the channel for queues with higher utilization and helps in 
achieving higher throughput by rapidly draining packets 
towards the destination. The proposed MAC enhances the 
performance of an end-to-end data flow by up to 30% for a six 
hop transmission in a chain topology and is demonstrated to 
remain competitive for other network topologies and for a 
variety of packet sizes.  
 
 

Index Terms – Ad-Hoc, MAC, Queue, QoS, Network 
Saturation. 
 

 

I.  INTRODUCTION 

Quality of Service (QoS) provisioning in Ad Hoc 
networks remains a challenging issue despite substantial 
research undertaken over the past decade [1]-[5]. Seminal 
papers have considered the capacity of a wireless network 
subject to multiple flows [6] but in this paper attention is 
restricted to a single multi-hop flow in the saturated region 
(a point where increasing the input data rates in the network 
does not enhance the performance further). Even in this 
case, due to high interference and limited bandwidth, 
network environments self-generate bottlenecks along 
multi-hop paths. The network saturates rapidly and end-to-
end throughput decays rapidly with path length [7]-[8].  

 
For a single multi-hop flow in an Ad Hoc wireless 

network, a node is considered to be active if it is a source 
node, a relay node, or a receiving node. In standard IEEE 
802.11DCF, all active nodes have equal probability of 
accessing the medium, and a node with i active nodes in its 
interference range may gain access to the medium with a 
probability of 1/i. In a linear chain topology, per node  
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access probability decreases as the hop count rises and the 
interfering nodes increases. For a long chain topology, the 
highest degree of interference occurs around the centre of 
the chain and is lower towards either the source or the 
destination ends of the chain. So, for a single flow along a 
chain, the queue utilization pattern will vary with the hop 
count. This motivates the design of a medium access 
mechanism that dynamically depends on the queue 
utilization of the participating nodes. 

 

 
 

Figure 1. A chain topology with four hop network 
 
In the given figure 1, if node A wants to send data to 

node E, as the number of hop increases, the degree of 
interference and the number of contenders also increases, so 
it gets harder to push the packets forward towards the 
destination. When node A uses the channel, node B and C 
has to differ, because node B is with the transmission range 
of node A and node C is within an interference range of 
node A. In such a distributed network with a shared channel 
mechanism, if a real time traffic with a high data rate of 
constant bit rate is generated at node A or node A acts as a 
gateway of the inflow traffics, the chances of buffer 
overflow is high since the access of the shared channel by 
node B or C would force node A to differ accessing the 
channel. Thus a ripple effect of differing upto two hop 
neighbours is formed when a node becomes active as a 
sender or as a relay node in a shared channel of multi hop 
network. So, achieving high end to end throughput is 
limited by the nature of the network.   

 
 In the condition of network saturation, losses of data in 

the network are mainly due to the queue being full, no route 
availability or retry count exceeded. Other kinds of drops 
are due to collision and packet error, but such packets are 
retransmitted if the TTL (Time To Live) and retry count are 
still valid. Problems induced by physical limitations like 
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