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Abstract—Kademlia is among the most prevalent Distributed
Hash Table (DHT) protocols in practice. To understand load-
balancing and fairness properties of any DHT system one of
the key requirements is to study and understand the zone size
distribution of the network. Already existing and well known
analytical results in this field are not applicable to Kademlia
directly, due to its unique addressing mechanism. We show
that a direct connection exists between the size of the zones
of a given Kademlia network and the shape parameters of
the data structure called PATRICIA trie filled with the overlay
addresses of the same network. Then analytical description of
the asymptotic properties of the Kademlia zone size distribution
is provided based on the existing literature on random binary
tries. We compare Kademlia to the Chord DHT, and show that
Kademlia provides a fairer zone size distribution. These results
can be used to achieve better load balancing in DHT systems.

Index Terms—Consistent hashing, load balancing, asymptotic
bounds, peer-to-peer networks.

I. INTRODUCTION

We examine load distribution in the Kademlia [1] distributed
hash table (DHT) system which is one of the most widely used
peer to peer (P2P) overlay in practice in these days1.

Distributed hash tables [1]–[3] - as their name suggest - are
for storing and retrieving arbitrary data in P2P networks using
hash keys. Data is distributed among all participant peers in
the network. Each node is responsible for a given part of the
hash space called zone. A node stores a given value if the
hash key of the value falls into its zone. The zone of the node
is usually determined by a predefined relation between the
overlay address of the node and the addresses of the other
online nodes. The goal is to minimize the number of zones that
have to be modified (increased or decreased) when additional
nodes join or leave the system. A somewhat contradicting goal
is to keep the zone sizes balanced. These goals are usually
achieved by a technique called consistent hashing [4].

The relative size of the zone of a given node determines
the expected relative number of data items it has to store. It
also influences the number of routes directed through the node.
Thus having a larger zone size means a larger expected average
load for the node in the system.

Using the assumption that both the node addresses and the
hash keys are uniformly distributed2, the zone size distribution
of a DHT protocol can be calculated by using probabilistic
models.
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1See http://en.wikipedia.org/wiki/Kademlia#Implementations,
2The first is true by definition, because in DHTs each joining node choose a

random address. The second part can be considered true due to the properties
of the commonly used hash functions.

The exact distribution can be used to describe, compare
or evaluate the performance characteristics of different DHT
systems, or to devise efficient uniform random node selection
algorithms [5], [6]. These algorithms could be used for
statistical estimations in large networks or as an algorithmic
building block in randomized network algorithms. Uniform
random node selection can also be used directly for load
balancing purposes. A specific example of application was
presented by Scott Lewis et al. [7]. Their scalable Byzantine
agreement algorithm is based on the availability of uniform
random node selection in a network.

Load balancing is also one of the areas that could benefit
much from the exactly known apriori distribution of the load
[8].

II. RELATED WORK

A. Consistent hashing

Karger et al. [4] have been introduced consistent hashing to
minimize the number of values that have to be moved upon a
hash table resize. They have provided the following algorithm:

The storage nodes (buckets) are randomly placed (hashed)
onto a unit circle, and each bucket stores the data with hash
keys between its hash and the hash of the previous bucket. The
handling of the hash space in the Chord [2] DHT system is
based upon the same concept.

B. DHT zone distribution

The probabilistic properties of the zone sizes have been
investigated in the original article that has introduced cosnsitent
hashing [4]. The load distribution of Chord DHT have been
first investigated by using simulation in [2]. The asymptotic
distribution of the minimal zone size in Chord have been
described in [5]. Cuevas et al. [9] have examined routing
fairness in the Chord system, based on the Chord zone size
distribution (as nodes with larger zone tend to appear in other
nodes routing table more frequently).

Finally, Wang et al. [10] have provided several limits –
that are true with high probability – for Chord’s zone size
distribution, such as the distribution of minimal, maximal zones
and have also examined different joining strategies like half
splitting3, and multipoint sampling4. It may be interesting to
mention, that for the half-splitting case, the authors of [10]
have relied on results coming from the research of regular tries,
but have not recognised the connection between the Kademlia
address space and PATRICIA tries. This article also contains
a good collection of the prior results of the field.

3When a joining node always choose an address that splits the original zone
into two equal parts.

4When a joining node choose its address by splitting the largest zone it has
found after sampling some random locations.
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C. Kademlia

For Kademlia the analytical literature is sparse. Recently Cai
and Devroye [11] have provided analytical results about the
search times in Kademlia. Their method is based on regular
tries: they’ve started with the initial assumption that the address
trie is balanced (in this case regular and PATRICIA tries are
similar), and then have refined the result by relaxing on this
balancedness assumption. They did not recognise the direct
connection between these exact (unbalanced) description of
the address space and PATRICIA tries.

D. Occupancy problem, poissanization

As we will show in section IV, the zone size of a Kademlia
node depends on whether particular address sets – these sets
are depend on the address of the given node – contain at least
one online node. The general version of this problem is called
occupancy problem:

Given n balls and c cells we assign the balls into the cells
randomly. What will be the probability that exactly k cells
remain empty?

In the most general case, cells can have different selection
probabilities, or the number of cells can be infinite – the only
restriction then is that the sum of the selection probabilities
have to be 1. This field of probability theory [12]–[14] gives a
general theoretical framework for our problem.

It is also worth to mention a general technique to solve
similar problems: analytic depoissonization [15]. In many
cases these kind of balls-in-urns problems can be modelled
easier with poissonization. Poissonization means that the exact
Bernoulli models are replaced with approximative Poisson
models (e.g. imagine balls arriving into the urns according
to Poisson processes). With depoissonization it is possible to
translate back the results of the Poisson model to the original
Bernoulli model.

Reference [13] has also presented results about the equiv-
alence of the moments of the original and the poissonizated
occupancy distributions.

E. PATRICIA tries

PATRICIA trie [16] is the compact version of the regular
trie (also called prefix tree). These structures are commonly
used to efficiently store strings together with their prefixes. By
providing efficient prefix search, they are particularly suitable
for storing dictionaries or routing tables.

In the generic trie each node of the tree represents a character
of the stored string, and a path to an internal node in the tree
represents a prefix string. Below that node one can find all the
strings sharing that same prefix. A path form the root to a leaf
node gives a stored string, where in each step we get the next
character of the string.

PATRICIA trie (also called radix tree) is a space optimized
version of the regular trie, where each node with only one
child is merged with its parent. In this case a node can contain
larger fragments of the prefix not just one character. (Figure 1
shows a PATRICIA trie storing five binary strings.)

As we show later, the shape parameters of the binary
PATRICIA trie are directly related to the zone size distribution
of the Kademlia DHT system.

Unfortunately it has been proved to be notoriously hard
to describe the exact shape parameters of random PATRICIA
tries, and despite it has been introduced for more than forty
years ago, the properties of the PATRICIA trie are still actively
researched. Luckily there exists many asymptotic results in
this field, that can be applied directly to our problems.

References [17]–[19] provide asymptotic and limiting dis-
tributions of various shape parameters of random PATRICIA
tries. A recent result about the expected value of the number
of tree nodes at a certain level of the trie have been pre-
sented in [20]. An interesting result is that the variance of
the insertion cost of random strings into PATRICIA tries –
which is related to the path length distribution – is constant:
1 + O(1) (= 1.000000000001237 . . . ) [21]. Finally there are
also results about the asymmetrical case where the input
alphabet is not uniformly distributed [22], [23].

III. KADEMLIA

This section is a short introduction to the Kademlia [1] DHT.
Kademlia is based on a 160 bit address space, to which both

nodes and keys are mapped. Each key-value pair is stored on
the node having the closest overlay address in the system to
the given key. Distance is calculated using the result of bitwise
binary XOR operator (⊕) interpreted as a natural number:

d(nodeaddress, key) = nodeaddress ⊕ key

Each node maintains 160 tables to store routing information.
In Kademlia terminology these tables are called k-buckets. The
i-th k-bucket contains at most K nodes whose distance from
the current node is between 2160−i and 2160−i+1, where K is
a pre-chosen system parameter.

K-buckets are ordered lists of nodes, with the most recently
seen node at the beginning of the list. If a node A receives a
message from another node B, than A tries to insert B into
the appropriate k-bucket, if there’s still room. If the given
k-bucket is full, A sends PING to the node from the end of the
list; if it replies, A moves it to the head of the list; if it does
not, A deletes it from the list, and replaces it with B. With
adequate network traffic, k-buckets remain consistent thanks
to the procedures above.

A. Searching

The Kademlia protocol defines four remote procedure calls
(RPC). Each participating node have to implement these:

• PING, check if a node is still connected;
• STORE, stores a key and corresponding data;
• FIND_NODE with an address as its parameter, returns

the K closest values to the given address from the node’s
routing tables;

• FIND_VALUE with a key as its parameter, if a node
stores data corresponding to the key, it returns the result
data; otherwise it behaves identically to FIND_NODE.

Using these RPCs a node can find the closest peer to a given
address. For example lets assume that a node (X) wants to
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look up the closest node to a key (y). The search goes through
the following steps:

1) Node X creates a list L containing the K closest
addresses to y. Initially it fills this list from its own
k-buckets.

2) X selects α unmarked nodes from the list, and runs the
FIND_NODE RPC on them (α is a predefined system-
wide parameter).

3) X updates the list L by merging the return values of the
FIND_NODE RPCs. Then it keeps only the K closest
addresses to y. It also marks every node in the list on
which the FIND_NODE RPC has been already run.

4) If the list still contains unmarked nodes, return to step 2.
5) The result node is the one with the closest address to y

in L.
When a node leaves the network, it simply copies its data

to the nearest node, and disconnects.

B. Defining zone distribution

Definition 1: Let A =
{
0, 1, . . . , 2160 − 1

}
be the set of

all addresses in the system. Let N be the set of occupied
addresses (the set of online nodes). We denote the number of
online nodes |N | with n.

Joining nodes choose a uniformly distributed random address
independently from each other. We assume that n > 0, i.e.,
every system has at least one node online.

Definition 2: Let X ∈ N be the address of a node in the
system, then define Close(X) ⊆ A as the set of addresses
where:

Close(X) =
{
Z | ∀Y ∈ N,Y �= X,X ⊕ Z < Y ⊕ Z

}

where ⊕ is the bitwise XOR operation, and its result is
interpreted as a natural number.
Close(X) can be imagined as a kind of Voronoi cell of X:

the set of all addresses that are closer to X – according to the
XOR distance – than to any other online node.

Definition 3:
Let the zone size T (X) of a node X ∈ N be:

T (X) =

∣∣Close(X)
∣∣

|A|
, (0 < T (X) ≤ 1).

The zone size of X represents the portion of addresses (A)
that are closer to X than to any other online node. For example
if T (X) = 0.5, then if a uniformly random address R from
the address set A is chosen – this is the case in practice when
a hash key is calculated to store a value – the closest online
node to R will be X with a probability of 0.5.

This way the distribution of the zone sizes in the system
corresponds to the load distribution – assuming that the hash
keys are uniformly distributed.

IV. KADEMLIA AND PATRICIA TRIES

In this section we present a connection between the Kademlia
zone sizes and the shape of the PATRICIA trie of the
Kademlia addresses. Then the cumulative distribution function
of Kademlia zone sizes is provided. Utilizing existing results

about random binary PATRICIA tries we describe the first two
moments of this zone size distribution, and an estimation of the
minimal zone size in the system is also provided. Finally we
provide an asymptotic estimation of the Jain’s fairness index
of the zone distribution, as a measure of load fairness.

A. Visualizing Kademlia zone sizes

First let us try to visualise the zone size distribution in XOR
distance as defined in section III-B.

1) The sum of zone sizes for all online nodes in the system
is 1.

2) The sum of zone sizes for online nodes whose addresses
start with 0 or 1 are 0.5 and 0.5 respectively, if there
is at least one online node in both the 0xxx. . . and the
1xxx. . . address space.

3) Groups of nodes with prefix: 00, 01, 10, 11 share 0.25,
0.25, 0.25, 0.25 parts of the whole territory if all address
prefixes contain at least one online node.

4) and so on. . .

(a) Division of zone sizes in XOR distance

(b) Kademlia addresses in PATRICIA
trie

Figure 1: Visualizing Kademlia zone sizes

What happens if there isn’t any node with prefix 10? Then
nodes with prefix 11 will share on a 0.5 territory, as they are
the only nodes with address prefix 1, and nodes with prefix 1
share 0.5 territory according to bullet 2 above. In Figure 1a
the division of the zones is depicted for addresses: 0000, 0001,
1001, 1100, 1111 in the four bit address space.

B. Kademlia zone sizes and the PATRICIA trie of addresses

We have seen that according to the XOR distance division
of the zone happens only if there is a branching in the regular
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trie of the addresses. Because in PATRICIA trie the internal
nodes with only one child (non-branching nodes) are merged
with their parents, the path length of the trie to a given address
leaf equals the number of branching on the path in the original
trie.

Using this insight the division of the zones can be described
with a corresponding PATRICIA prefix trie. The leaves of the
trie are the occupied addresses. At the root, we begin with a
zone size of 1, and at every lower level the territory is divided
by two.

Figure 1 shows a division of zones between nodes: 0000,
0001, 1001, 1100, 1111 in the four bit address space, and the
corresponding PATRICIA trie (in Figure 1b) storing the same
addresses.

The size of the zone of a node is 2−l where l is the path
length of the address in the binary PATRICIA trie.

The sum of the zone sizes is always one – in accordance
with the well known Kraft’s inequality, that states that for every
binary tree: ∑

�∈leaves

2−depth(�) ≤ 1

where equality holds if every internal node has two children,
which is true by definition in PATRICIA tries.

C. Distribution of zone sizes in Kademlia

We have two conflicting assumptions:
1) Joining nodes choose their addresses from a finite

address space independently and randomly with uniform
distribution, meaning that address collision is possible

2) Every node has a unique address
If there would be any measurable chance of address collision,

it could be handled by increasing the address space. Simply
we assume that this method would be used instead of other
methods such as reconnection with a different address. It is
worth considering that although the analytical description would
be somewhat different for the aforementioned two cases, the
practical numerical values would only be different by the order
of magnitude of the hash collision probability - which is – by
design – negligible in practice. Therefore in the rest of the
paper we simply consider the size of the address space (the
height of the PATRICIA trie of addresses) unbounded. Similar
simplifications (for example modelling the Chord ring with a
continuous unit circle) are prevalent in the literature.

Definition 4: Let Pn(T ≤ x) = FT
n (x) be the cumulative

distribution function (CDF) of T (the zone sizes) in a system
with n independently and randomly chosen node addresses.
Then, in a system with one node (n = 1):

FT
1 (x) =

{
0 if x ≤ 1,
1 if x > 1.

We can write a recursive definition of FT
n (x) using the law

of total probability:
1) Let us visualise the n node addresses at the root of the

corresponding regular trie (Fig. 1a). Every address begins
with 0 or 1 with a probability of 0.5 respectively. The
root node divides the n nodes into two sets.

2) The cardinality of these two sets has a binomial distri-
bution, and they sum up to n:

P (no address begins with 0) =

(
n

0

)
2−n,

P (1 address begins with 0) =

(
n

1

)
2−n,

...

P (n addresses begin with 0) =

(
n

n

)
2−n.

3) Let us assume that 5 addresses begin with 0 and n− 5
with 1. If FT

5 (x) and FT
n−5(x) is known, the CDF of their

combination can be written. As each of the two branches
shares upon only 0.5 zone, we have to use FT

5 (2x) and
FT
n−5(2x). Note that this would not be the case if the

division was (n; 0) or (0;n), because than the zone is
not halved (no new level added in the corresponding
PATRICIA trie)!

4) Using the law of total probability we can write the
following recursive definition:

FT
n (x) =

1

2n

((
n

0

)
FT
n (x) +

(
n

n

)
FT
n (x)+

+
n−1∑
k=1

(
n

k

)(
k

n
FT
k (2x) +

n− k

n
FT
n−k(2x)

)


5) Finally – after rearranging occurrences of FT
n (x) to the

left – we reach the following recursive formula as the
CDF of the exact zone distribution of the Kademlia
DHTs:

FT
1 (x) =

{
0 if x ≤ 1,
1 if x > 1.

FT
n (x) =

1

2n − 2

n−1∑
k=1

((
n− 1

k − 1

)
FT
k (2x)+

+

(
n− 1

k

)
FT
n−k(2x)

)

D. Moments of the zone sizes in Kademlia

Starting from the known recursive generating function of
the PATRICIA trie’s path lengths:

gx(1) = 1

gx(n) =
2x

2n − 2

n−1∑
i=1

(
n− 1

i− 1

)
gx(i)

We can recognise that by substituting x = 1
2 to this generating

function of the trie path length distribution, we get the formula
for the expected value of the Kademlia zone sizes.
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Here the result can be inferred much easier considering the
fact that nodes share the entire hash space, so on average they
get nth part of it:

E(T ) =
1

n
(= g 1

2
(n) =

1

2n − 2

n−1∑
i=1

(
n− 1

i− 1

)
g 1

2
(i))

As a by-product this short-cut provides an interesting identity
for the recursive formula of the generating function.

Using the similar insight about the generating function, the
variance of the zones can be defined as:

Vn(T ) = En(T
2)− E2

n(T ) = g 1
4
(n)− 1

n2

We can analyse the asymptotic behaviour of g 1
4
(n) by

using the generating function of the poissonizated limiting
distribution:

Gx(n) =
∞∏
i=1

[
e

−n

2i + (1− e
−n

2i )x
]

This distribution is derived according to section II-D. We simply
assume that branching happens at a given node in PATRICIA
trie according to Poisson distribution instead of using the proper
Binomial distribution.

According to [14] the variance of the original and the
poissonizated distribution is asymptotically close. For certain
cases the difference is o(1) (small ordo), meaning that they
are asymptotically equivalent5. Therefore we calculate G 1

4
(n)

first.
From the generating function we have:

G 1
4
(n) =

∞∏
i=1

[
e

−n

2i + (1− e
−n

2i )
1

4

]
=

∞∏
i=1

[
1

4
+

3

4
e

−n

2i

]

As a simplification let’s assume that n is a power of two,
then the limit of G 1

4
(n) as n goes to 2∞ is:

lim
n→2∞

G 1
4
(n) = lim

n→2∞

∞∏
i=1

[
1
4 + 3

4e
−n

2i

]
=

= lim
n→2∞

1

4log2 n

log2 n∏
i=1

[
1 + 3e

−n

2i

] ∞∏
i=log2 n+1

[
1

4
+

3

4
e

−n

2i

]
=

= lim
n→2j ,j→∞

1

n2

j∏
i=1

[
1 + 3e−2j−i

] ∞∏
i=j+1

[
1

4
+

3

4
e−2j−i

]
=

= lim
n→2j ,j→∞

1

n2

j−1∏
i=0

[
1 + 3e−2i

] ∞∏
i=1

[
1

4
+

3

4
e−2−i

]
=

= lim
n→2∞

1.5254695585786 . . .

n2

The constant of the last line is the result of calculating the
(existing) limits of the products numerically. By relaxing the
assumption that n is a power of two, the results may be different
due to the nonzero fractional part of log2 n.

Instead of deriving this more generic solution, we have
simply used this specific asymptotic behaviour of the limiting

5It may be interesting to mention here that G1/2(n) – the expected value
of the poissonizated distribution – can be given exactly in closed form, it
equals: 1−e−n

n

distribution at large powers of 2 as a clue to search for g 1
4
(n)

in the form of: g 1
4
(n) � c/n2.

By numerical calculations we have found that c is oscillating
around 1.525 with a decreasing amplitude as n increases6:

g 1
4
(n) � 1.525

n2

This gives:

Vn(T ) = g 1
4
(n)− 1

n2
� 0.525

n2

An alternative characterization of the zone size distribution
can be given by calculating Jain’s fairness index. This index
can be used to describe fairness with a constant value, when
the participants share on some finite resource (such as the hash
space in our case). It has been defined as:

J (x1, x2, . . . , xn) =

(
n∑

i=1

xi

)2

n
n∑

i=1

x2
i

The result ranges from 1/n when one node gets all the
resources (worst case) to 1 when nodes have equal shares of
the resources (best case). The index is k/n if k nodes equally
share the resource, while the other n − k node receive zero
amount.

From the variance calculation it follows that in the case of
Kademlia:

JT ≈ 1/1.525 ≈ 0.655

E. Distribution of the size of the minimal zone in Kademlia

The distribution of the minimal zone can be used to achieve
efficient uniform random node selection in a Kademlia system.
The distribution of the minimal zones can be derived with the
method presented in section IV-C.

For the details of the derivation of the exact cumulative
density function (CDF) of the minimal sized zone in Kademlia,
please refer to the previous work of the authors [6]. Here we
present the result without further explanation:

FTmin
1 (x) =

{
0 if x ≤ 1,
1 if x > 1.

FTmin
n (x) =

1

2n − 2

n−1∑
k=1

(
n

k

)(
FTmin

k (2x) + FTmin

n−k(2x)−

−FTmin

k (2x)FTmin

n−k(2x)
)

The minimal zone size in Kademlia is in direct relationship
with the height of the PARTICIA trie of addresses. Having a
trie with height h, the corresponding Kademlia network will
have a minimal zone size of: 2−h.

Key results about the heights of PATRICIA tries have been
presented in [18]. For the random binary case the height of the

6After n > 1000 these four decimal digits of 1.525 gets stabilized.
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trie is – depending on n – oscillating around the most probable
value of:

h1 = �log2 n+
√
2 log2 n− 3

2
�+ 1

The height of the trie is concentrated on h1 for most n, and
for some n it is either concentrated on h1 and h1 + 1 or on
h1 and h1 − 1.

From this the most probable value of the minimal zone is
simply:

Tmin = 2−h1

The random node selection algorithm of the authors [6]
relies on the estimation of minimal zone size in the system.
In that particular case using an estimate that is lower than the
actual minimal zone size results in a perfectly uniform random
node selection. Contrarily underestimating the minimal zone
size by a large margin results in a large increase in the run
time of the random node selection algorithm. In this special
case the probable underestimation of the actual minimal zone
size:

2−h1−1 = 2−�log2 n+
√

2 log2 n− 3
2 � � Tmin

could provide a viable trade-off.
Alternatively by using the asymptotics of [20]7, any zone

size can be characterized with the expected number of nodes
having smaller zone – this can be useful to estimate a (minimal)
zone together with the known expected number of outliers.

V. COMPARISON TO CHORD

Some of the basic properties of Chord zone distribution –
derived from the model of random points on unit circle – are
summarized in Table I for comparison purposes.

Zone size Chord Kademlia

Average 1/n 1/n
Variance (n− 1)/(n2 + n3) ≈ 0.525/n2

Minimal 1/n2(= 2−2 log2 n) ≥ 2−�log2 n+
√

2 log2 n− 3
2
�

Jain’s fairness 0.5 + 1/n 0.655

Table I: Main parameters of the zone size distributons

The full derivation of these results are available in the
literature (section II-B). Only a small summary is presented
here for comparison purposes.

Cumulative Density Function (CDF) of zone sizes in Chord:

Pn(T ≤ x) = Fn(x) = 1− (1− x)n−1 (0 ≤ x ≤ 1)

Probability density function (PDF) of zone sizes in Chord:

fn(x) = Fn
′(x) = (n− 1)(1− x)n−2 (0 ≤ x ≤ 1)

Expected value (average zone size), as nodes share the whole
hash space this result is the same as for Kademlia:

En(x) = 1/n (=

1∫

0

x(n− 1)(1− x)n−2 dx)

Variance of zone sizes:
7The expected number of nodes at a given level of the PATRICIA trie

Vn(x) =

1∫

0

(
x− 1

n

)2

(n− 1)(1− x)n−2 dx =

=

[
(n− 1)(1− x)n

(
1− 2x+ x2n2

)
n2(n+ 1)(x− 1)

]1

0

=
n− 1

n2 + n3
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Chord. Kademlia zone size distribution is also fairer compared
to Chord’s by the measure of Jain’s fairness index.

The consequence is that in general cases Kademlia achieves
a more fair distribution of data than Chord, and this suggests
that it may show a more uniform distribution of routing load
too. Finally the results about the size of the minimal zone in
Kademlia open the possibility to improve upon the random
node sampling algorithm of the authors [6].
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Chord. Kademlia zone size distribution is also fairer compared
to Chord’s by the measure of Jain’s fairness index.

The consequence is that in general cases Kademlia achieves
a more fair distribution of data than Chord, and this suggests
that it may show a more uniform distribution of routing load
too. Finally the results about the size of the minimal zone in
Kademlia open the possibility to improve upon the random
node sampling algorithm of the authors [6].
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