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New Key Agreement Techniques for Sensor
Networks

Abhishek Parakh and Subhash Kak

Abstract—We propose two computationally efficient key agree-
ment algorithms. The schemes are ideally suited for computa-
tionally constrained environments such as sensor networks. The
first proposed technique is general and uses matrix factorization.
We provide constructive algorithms to implement the scheme.
The second algorithm uses commutative property of matrices to
distribute keys and provides two different keys per node pair.
Both the algorithms are practical in terms of implementation,
security provided and linear in computational complexity.

Index Terms—Key distribution, sensor networks, matrix fac-
torization

I. INTRODUCTION

Sensor networks are becoming increasingly popular for
applications such as patient health monitoring, detection of
border crossings, bridge stress monitoring, signal relay points
in battlefields and so on. In many of these applications
sensors need to communicate securely to either relay data to
base station or perform distributed computations. Therefore,
encryption/decryption keys need to be distributed among the
sensors.

Key distribution in sensor is particularly challenging be-
cause sensors have very limited computational power and
transmission ranges. While in recent years the memory capac-
ity for sensors has grown, they still cannot hold large number
of keys for pair-wise communication. The key distribution
challenge is further complicated by the fact that most sensors
are deployed at random. As a result, we do not know a priori
which sensors are going to be neighbors of other sensors that
is within communication range of each other.

In general, for any key distribution scheme two techniques
can be adopted - either install each node with pairwise
symmetric keys before deployment or let sensors perform a
public key exchange.

Installing pairwise symmetric keys is not a practical solution
as it requires large storage capacity and does not allow for
dynamic networking where nodes leave and new nodes join.
This may happen because old sensors stop working and need
to be replaced with new ones or the batteries run out.

If we consider a network to have N nodes, then a pair-wise
symmetric key distribution would require each node to store
N − 1 unique keys (because of lack of a priori knowledge
of sensor’s neighbors). If AES is used as the encryption
algorithm, this would require (N − 1) · 128 bits of storage
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as it is typical to have 10,000 sensors deployed in a network.
If we allow for multiple sensor to use the same key, then we
can reduce the number of keys installed on a given sensor, but
that also means that once deployed there is a chance a sensor
may not share a key with some of its neighbors. Therefore, if
a sensor wished to communicate with a neighbor with which
it does not share a key (or is out of its communication range),
then link encryption (hop-by-hop) is used. In link encryption,
assume sensor a wants to communicate with sensor d with
which it does not share a key (or d is out of its communication
range). If a shares a key with node b which in turn shares a key
with node d, then a can send b a message such as Ekab

(m);
where kab is a key shared between a and b. Node b upon
receiving this message, first decrypts it and then re-encrypts it
with key kbd that it shares with node d and send it to d. This
latter approach requires multiple encryption/decryptions along
the way as well as a path finding and routing algorithm.

Eschenauer and Gligor [1] introduced the above approach
where they assumed limited memory capacity and limited
communication range for sensor networks. Further, they as-
sumed random deployment of sensors, i.e. a sensor’s neigh-
bors were not known before deployment. As a result, after
deployment the sensors performed a neighbor discovery in
which they determined who their neighbors are and with which
one of them they share keys. Then the sensors performed
a path discovery to those sensors with which they do not
share keys. Once a path was discovered, messages were sent
using link-encryption. Although, the scheme proposed in [1]
is very general and applicable to most scenarios, in practise
one does have some knowledge of sensor neighborhood before
deployment. Hence, EG requires the storage of larger number
of keys on each sensor than may be required in a given
scenario. Further, the path finding and routing protocols in a
distributed sensor network are not trivial, especially when the
number of neighbors one shares keys with are only a fraction
of the number of neighbors actually in communication range.

Du et al. [2] assume deployment knowledge to reduce
the number of keys stored per node. A gaussian probability
distribution function is assumed with every sensor having a
high probability of being deployed at a specific coordinate in
a grid. However, such a scheme is not applicable to mobile
nodes. Chan et al. [3] proposed a q-composite scheme that is
similar to the EG scheme but requires that the nodes share q
keys from the key ring instead of just one key and then final
key to be used for encryption is computed as a function of
these q shared keys.

In [4] it is assumed that mobile sensors handle the load
of key distribution while static sensors only require minimal
resources for key management. A bootstrapping technique is
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proposed in [5] that enables sensors to compute keys, once the
network is deployed, based on network density, nodes memory
and transmission range. A new post-deployment pairwise key
distribution scheme for two-tier sensor networks is considered
in [6] and a polynomial based key generating model is used
for generating pair-wise keys to be shared with neighboring
nodes.

The second approach, for key distribution, is that of using
public key algorithms. In such algorithms, each sensor is
installed with a public key and a corresponding private key.
After deployment, the sensors broadcast their public keys to
the neighboring sensors. The sending node can then encrypt
all communication with the receiving node’s public key. A
number of public key algorithms have been implemented on
sensors that claim to provide practical solutions, however, they
consume many times more power than secret key encryption
algorithms [7]. A hybrid scheme where public keys are used
to exchange secret keys and the data encryption and transfer
takes place using secret key algorithms is probably of a greater
practical use as it reduces power consumption. One such
hybrid approach is explored in [8] where the entire sensor
network is divided into clusters managed by cluster heads.
These cluster heads implement public key cryptography and
aggregate data while individual sensors only use symmetric
keys for encryption. A central key management server is used
to establish keys in [9]. A hash chain based key distribution
mechanism is discussed in [10].

Blom [11] discussed key exchange techniques based on
the use of (n, k) linear codes with threshold property. A
slightly modified version of Blom’s algorithm was used by
Du et al. [12] for establishing multiple shared keys between
nodes by essentially executing Blom’s scheme multiple times.
Blundo et. al proposed a key distribution scheme [13] based
on bivariate symmetric polynomial. Another scheme using
LU Composition integrated with Elliptic Curve Diffie-Hellman
has been proposed in [14]. Techniques based on polynomial
interpolation and the idea of secret sharing are discussed
in [15], [16] but have slightly higher computational cost
compared to the proposed scheme. Similar polynomial based
scheme for a two-tier network is proposed in [17].

In this paper we discuss an approach the bridges the gap
between secret key and public key algorithms and enables
sensors to establish shared secret keys with each other after
deployment. In this approach each sensor is pre-installed with
a small amount of seed information that can be exchanged with
a neighbor to agree on a secret key. Any secret key encryption
algorithm can be used to encrypt data thereon. Therefore, the
proposed approach provides a number of advantages:

1) Pre-deployment of encryption keys is not required (key
are generated after deployment).

2) Key agreement only has linear complexity.
3) A given node can share keys with all its neighbors

resulting in larger connectivity within the network. This
in turn leads to shorter path lengths compared to other
methods where nodes share keys with only a fraction of
its neighbors.

4) It allows for dynamic networks with nodes leaving and
joining.

5) It assumes no pre-deployment knowledge of node loca-
tions and hence is general.

The proposed algorithm is based on matrix operations,
where the computationally expensive pre-processing is pushed
to pre-deployment phase and can be done at a base station.

In the following section, we present the proposed algorithm.
In subsections II-A and II-B we discuss the size of matrices
used and the complexity of the proposed algorithm. Section III
discusses the security of the proposed algorithm for different
size of matrices used and subsection III-C discusses the
resilience against node capture. Section IV presents some
constructive algorithms for the proposed scheme. Section V
presents the second algorithm with commuting matrices and
section VI concludes the paper.

II. PROPOSED ALGORITHM

Our aim is to provide alternatives to the use of public key
algorithms for the establishment of shared secret keys. To
achieve this we store a small amount of information, pre-
deployment, on all the sensors. Once deployed, the sensors
exchange a part of the pre-installed information with their
neighbors to generate a shared secret key. This is very similar
to what happens in Diffie-Hellman key exchange. However,
here we do not require any exponentiation operation and the
security of the scheme does not rely on the difficulty of
mathematical operations (for example the security of Diffie-
Hellman depends on the difficult of finding logarithms in finite
fields). Since, the generation of the session key takes place
after deployment, any sensor can perform a key exchange
with any other sensor within its communication range. Larger
connectivity between neighbors provides shorter path lengths
through the network.

In the proposed algorithm all computations are performed
modulo a large prime p. The proposed method is based on
matrix factorization. It is further assumed that there are N
sensors in the field and the deployment is done at random.
The proposed algorithm consists of two phases - the pre-
deployment phase and the key agreement phase.

The pre-deployment phase is performed by a base
station. This phase essentially involves the factorization of a
symmetric matrix. The symmetric matrix consists of random
numbers from a finite field. These random numbers are the
actual keys that will be used, therefore an appropriately
large finite field must be used (usually on the order of 128
bits - if AES is being used). The base station performs the
pre-deployment computations as follows.

Pre-deployment Phase (at base station):
1) Randomly choose a symmetric matrix K with elements

in Zp.
2) Find two matrices X and Y such that XY = K.
3) Randomly assign rth row of X and rth column of Y to

each sensor node.

While distributing rows and columns, if node i receives
the rth row of matrix X , it also receives the rth column of
matrix Y . Here r is an integer chosen at random with uniform
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probability from [1, q], where matrix K is a symmetric matrix
of size q × q.

After every sensor is installed with a row-column pair from
X and Y , the sensors can be deployed in the field using any
mode of deployment. Once deployed, each sensor probes its
neighborhood to discover the neighbors and then agree on a
symmetric key as follows.

Key Agreement Phase:
When any two nodes, i and j, wish to agree on an encryp-

tion key, they exchange their columns of Y (in plaintext) and
compute a common key as follows,

Node i computes: Kij = rowi(X) · colj(Y )

and node j computes: Kji = rowj(X) · coli(Y )

As matrix K is symmetric, Kij = Kji. Since a node in the
network has only one row and one column installed on it, the
notation rowi(X) denotes the row of X that was stored on
node i. This must not be confused with row i of X . Similarly,
colj(Y ) is the column of Y assigned to node j.

Fig. 1 show the pictorial representation of matrices X and
Y and fig. 2 illustrates a sensor network in which all the nodes
within the communication range with each other can share an
encryption key. Only a few nodes with their communication
ranges are shown.

Fig. 1. A node gets the rth row and column of matrices X and Y.

A. Size of Matrices

Assume a network with N nodes. If we wanted every node-
pair in the network to share a randomly and uniformly chosen
key, then there would exist N(N−1)

2 independent keys. In other
words, if an eavesdropper is able to determine the key being
used for the link between nodes i and j, then he gains no
advantage in determining the key being used on any other
link. For this to be true, the symmetric key matrix K needs
to be of size N ×N since the upper (or lower) triangle of the
matrix contains N(N−1)

2 elements (not including the diagonal
elements that only form “self-keys”).

A N × N key matrix can be factored into X and Y in
different ways where the size of matrix X is N × m and
the size of matrix Y is m × N . As a result, every node in
the network can receive a unique row-column pair during the
pre-deployment phase. A simple row-column pair distribution
algorithm would give node i, the ith row of X and ith row

of Y . As a result, the storage required on each node is 2m
integers.

In general if reuse of keys is allowed, matrix K may be
of size q × q, where q ≤ N , and matrices X and Y are
of sizes q × m and m × q, respectively. In this case, step 3
of the algorithm randomly assigns rows and columns, where
a row-column pair may go to more than one sensor node.
This implies that some of the node pairs may share the same
encryption key. More precisely, a q × q matrix has q(q−1)

2
random and independent numbers. Therefore, it is expected
that any given key will be shared by N(N−1)

q(q−1) links and each
row-column pair may go to N

q nodes.

B. Linear Computational Complexity of Key Generation

The key generation operation for a given link involves the
multiplication of one row of X with a column of Y . If we
assume the size of X is q × m and the size of Y is m × q,
then computing a key requires m multiplications and m − 1
additions. Further this is dependent on the size of matrices X
and Y which in turn depends on the desired level of security.
In the worst case X and Y are of size N ×N and hence key
generation requires N multiplications and N − 1 additions.

III. SECURITY OF THE PROPOSED SCHEME

A. Size of K is N ×N

Assume that matrix K is of size N × N and therefore X
and Y are of sizes N ×m and m×N respectively. The upper
triangle (including the diagonal) of matrix K has N(N+1)

2
elements all of which are generated from 2(N ×m) elements.
For each key there are p possibilities and it is clear that in the
absence of any knowledge of the elements of X and Y , all
the p possibilities for every key remain equally likely.

However, since the columns of Y are being transmitted in
plain text, an eavesdropper can record these columns. Further,
if the eavesdropper is able to listen to N distinct transmissions,
of columns of Y , from N distinct nodes, then there remain N !
possibilities to arrange these columns in matrix Y . However,
this gives no information about matrix X which has N ×m
elements in it.

Now, if the adversary tries to guess the values of elements
in matrix X , then every new row of X gives the adversary
decreasing amount of information. This is because the key
matrix K is symmetric. As a result, the first row of X when
multiplied with Y gives N − 1 unique keys, the second row
of X when multiplied with Y gives N−2 unique keys and so
on. However, to determine all the keys this way, the adversary
will have to determine all the rows of X , i.e. N ×m values
from Zp.

Two possible choices remain for the eavesdropper:
• If m > N then it is more difficult to determine X than

it is to determine the elements of K directly. Therefore,
capturing N columns of Y gives no advantage.

• However if m < N , then determining the first row of
X (m values) will result in N − 1 keys, determining the
second row X (another m values) will result in N −
2 keys and so on. Consequently, an adversary can stop
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III. SECURITY OF THE PROPOSED SCHEME

A. Size of K is N ×N

Assume that matrix K is of size N × N and therefore X
and Y are of sizes N ×m and m×N respectively. The upper
triangle (including the diagonal) of matrix K has N(N+1)

2
elements all of which are generated from 2(N ×m) elements.
For each key there are p possibilities and it is clear that in the
absence of any knowledge of the elements of X and Y , all
the p possibilities for every key remain equally likely.

However, since the columns of Y are being transmitted in
plain text, an eavesdropper can record these columns. Further,
if the eavesdropper is able to listen to N distinct transmissions,
of columns of Y , from N distinct nodes, then there remain N !
possibilities to arrange these columns in matrix Y . However,
this gives no information about matrix X which has N ×m
elements in it.

Now, if the adversary tries to guess the values of elements
in matrix X , then every new row of X gives the adversary
decreasing amount of information. This is because the key
matrix K is symmetric. As a result, the first row of X when
multiplied with Y gives N − 1 unique keys, the second row
of X when multiplied with Y gives N−2 unique keys and so
on. However, to determine all the keys this way, the adversary
will have to determine all the rows of X , i.e. N ×m values
from Zp.

Two possible choices remain for the eavesdropper:
• If m > N then it is more difficult to determine X than

it is to determine the elements of K directly. Therefore,
capturing N columns of Y gives no advantage.

• However if m < N , then determining the first row of
X (m values) will result in N − 1 keys, determining the
second row X (another m values) will result in N −
2 keys and so on. Consequently, an adversary can stop
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proposed in [5] that enables sensors to compute keys, once the
network is deployed, based on network density, nodes memory
and transmission range. A new post-deployment pairwise key
distribution scheme for two-tier sensor networks is considered
in [6] and a polynomial based key generating model is used
for generating pair-wise keys to be shared with neighboring
nodes.

The second approach, for key distribution, is that of using
public key algorithms. In such algorithms, each sensor is
installed with a public key and a corresponding private key.
After deployment, the sensors broadcast their public keys to
the neighboring sensors. The sending node can then encrypt
all communication with the receiving node’s public key. A
number of public key algorithms have been implemented on
sensors that claim to provide practical solutions, however, they
consume many times more power than secret key encryption
algorithms [7]. A hybrid scheme where public keys are used
to exchange secret keys and the data encryption and transfer
takes place using secret key algorithms is probably of a greater
practical use as it reduces power consumption. One such
hybrid approach is explored in [8] where the entire sensor
network is divided into clusters managed by cluster heads.
These cluster heads implement public key cryptography and
aggregate data while individual sensors only use symmetric
keys for encryption. A central key management server is used
to establish keys in [9]. A hash chain based key distribution
mechanism is discussed in [10].

Blom [11] discussed key exchange techniques based on
the use of (n, k) linear codes with threshold property. A
slightly modified version of Blom’s algorithm was used by
Du et al. [12] for establishing multiple shared keys between
nodes by essentially executing Blom’s scheme multiple times.
Blundo et. al proposed a key distribution scheme [13] based
on bivariate symmetric polynomial. Another scheme using
LU Composition integrated with Elliptic Curve Diffie-Hellman
has been proposed in [14]. Techniques based on polynomial
interpolation and the idea of secret sharing are discussed
in [15], [16] but have slightly higher computational cost
compared to the proposed scheme. Similar polynomial based
scheme for a two-tier network is proposed in [17].

In this paper we discuss an approach the bridges the gap
between secret key and public key algorithms and enables
sensors to establish shared secret keys with each other after
deployment. In this approach each sensor is pre-installed with
a small amount of seed information that can be exchanged with
a neighbor to agree on a secret key. Any secret key encryption
algorithm can be used to encrypt data thereon. Therefore, the
proposed approach provides a number of advantages:

1) Pre-deployment of encryption keys is not required (key
are generated after deployment).

2) Key agreement only has linear complexity.
3) A given node can share keys with all its neighbors

resulting in larger connectivity within the network. This
in turn leads to shorter path lengths compared to other
methods where nodes share keys with only a fraction of
its neighbors.

4) It allows for dynamic networks with nodes leaving and
joining.

5) It assumes no pre-deployment knowledge of node loca-
tions and hence is general.

The proposed algorithm is based on matrix operations,
where the computationally expensive pre-processing is pushed
to pre-deployment phase and can be done at a base station.

In the following section, we present the proposed algorithm.
In subsections II-A and II-B we discuss the size of matrices
used and the complexity of the proposed algorithm. Section III
discusses the security of the proposed algorithm for different
size of matrices used and subsection III-C discusses the
resilience against node capture. Section IV presents some
constructive algorithms for the proposed scheme. Section V
presents the second algorithm with commuting matrices and
section VI concludes the paper.

II. PROPOSED ALGORITHM

Our aim is to provide alternatives to the use of public key
algorithms for the establishment of shared secret keys. To
achieve this we store a small amount of information, pre-
deployment, on all the sensors. Once deployed, the sensors
exchange a part of the pre-installed information with their
neighbors to generate a shared secret key. This is very similar
to what happens in Diffie-Hellman key exchange. However,
here we do not require any exponentiation operation and the
security of the scheme does not rely on the difficulty of
mathematical operations (for example the security of Diffie-
Hellman depends on the difficult of finding logarithms in finite
fields). Since, the generation of the session key takes place
after deployment, any sensor can perform a key exchange
with any other sensor within its communication range. Larger
connectivity between neighbors provides shorter path lengths
through the network.

In the proposed algorithm all computations are performed
modulo a large prime p. The proposed method is based on
matrix factorization. It is further assumed that there are N
sensors in the field and the deployment is done at random.
The proposed algorithm consists of two phases - the pre-
deployment phase and the key agreement phase.

The pre-deployment phase is performed by a base
station. This phase essentially involves the factorization of a
symmetric matrix. The symmetric matrix consists of random
numbers from a finite field. These random numbers are the
actual keys that will be used, therefore an appropriately
large finite field must be used (usually on the order of 128
bits - if AES is being used). The base station performs the
pre-deployment computations as follows.

Pre-deployment Phase (at base station):
1) Randomly choose a symmetric matrix K with elements

in Zp.
2) Find two matrices X and Y such that XY = K.
3) Randomly assign rth row of X and rth column of Y to

each sensor node.

While distributing rows and columns, if node i receives
the rth row of matrix X , it also receives the rth column of
matrix Y . Here r is an integer chosen at random with uniform
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probability from [1, q], where matrix K is a symmetric matrix
of size q × q.

After every sensor is installed with a row-column pair from
X and Y , the sensors can be deployed in the field using any
mode of deployment. Once deployed, each sensor probes its
neighborhood to discover the neighbors and then agree on a
symmetric key as follows.

Key Agreement Phase:
When any two nodes, i and j, wish to agree on an encryp-

tion key, they exchange their columns of Y (in plaintext) and
compute a common key as follows,

Node i computes: Kij = rowi(X) · colj(Y )

and node j computes: Kji = rowj(X) · coli(Y )

As matrix K is symmetric, Kij = Kji. Since a node in the
network has only one row and one column installed on it, the
notation rowi(X) denotes the row of X that was stored on
node i. This must not be confused with row i of X . Similarly,
colj(Y ) is the column of Y assigned to node j.

Fig. 1 show the pictorial representation of matrices X and
Y and fig. 2 illustrates a sensor network in which all the nodes
within the communication range with each other can share an
encryption key. Only a few nodes with their communication
ranges are shown.

Fig. 1. A node gets the rth row and column of matrices X and Y.
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Assume a network with N nodes. If we wanted every node-
pair in the network to share a randomly and uniformly chosen
key, then there would exist N(N−1)

2 independent keys. In other
words, if an eavesdropper is able to determine the key being
used for the link between nodes i and j, then he gains no
advantage in determining the key being used on any other
link. For this to be true, the symmetric key matrix K needs
to be of size N ×N since the upper (or lower) triangle of the
matrix contains N(N−1)

2 elements (not including the diagonal
elements that only form “self-keys”).

A N × N key matrix can be factored into X and Y in
different ways where the size of matrix X is N × m and
the size of matrix Y is m × N . As a result, every node in
the network can receive a unique row-column pair during the
pre-deployment phase. A simple row-column pair distribution
algorithm would give node i, the ith row of X and ith row

of Y . As a result, the storage required on each node is 2m
integers.

In general if reuse of keys is allowed, matrix K may be
of size q × q, where q ≤ N , and matrices X and Y are
of sizes q × m and m × q, respectively. In this case, step 3
of the algorithm randomly assigns rows and columns, where
a row-column pair may go to more than one sensor node.
This implies that some of the node pairs may share the same
encryption key. More precisely, a q × q matrix has q(q−1)

2
random and independent numbers. Therefore, it is expected
that any given key will be shared by N(N−1)

q(q−1) links and each
row-column pair may go to N

q nodes.

B. Linear Computational Complexity of Key Generation

The key generation operation for a given link involves the
multiplication of one row of X with a column of Y . If we
assume the size of X is q × m and the size of Y is m × q,
then computing a key requires m multiplications and m − 1
additions. Further this is dependent on the size of matrices X
and Y which in turn depends on the desired level of security.
In the worst case X and Y are of size N ×N and hence key
generation requires N multiplications and N − 1 additions.
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Assume that matrix K is of size N × N and therefore X
and Y are of sizes N ×m and m×N respectively. The upper
triangle (including the diagonal) of matrix K has N(N+1)

2
elements all of which are generated from 2(N ×m) elements.
For each key there are p possibilities and it is clear that in the
absence of any knowledge of the elements of X and Y , all
the p possibilities for every key remain equally likely.

However, since the columns of Y are being transmitted in
plain text, an eavesdropper can record these columns. Further,
if the eavesdropper is able to listen to N distinct transmissions,
of columns of Y , from N distinct nodes, then there remain N !
possibilities to arrange these columns in matrix Y . However,
this gives no information about matrix X which has N ×m
elements in it.

Now, if the adversary tries to guess the values of elements
in matrix X , then every new row of X gives the adversary
decreasing amount of information. This is because the key
matrix K is symmetric. As a result, the first row of X when
multiplied with Y gives N − 1 unique keys, the second row
of X when multiplied with Y gives N−2 unique keys and so
on. However, to determine all the keys this way, the adversary
will have to determine all the rows of X , i.e. N ×m values
from Zp.

Two possible choices remain for the eavesdropper:
• If m > N then it is more difficult to determine X than

it is to determine the elements of K directly. Therefore,
capturing N columns of Y gives no advantage.

• However if m < N , then determining the first row of
X (m values) will result in N − 1 keys, determining the
second row X (another m values) will result in N −
2 keys and so on. Consequently, an adversary can stop
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integers.

In general if reuse of keys is allowed, matrix K may be
of size q × q, where q ≤ N , and matrices X and Y are
of sizes q × m and m × q, respectively. In this case, step 3
of the algorithm randomly assigns rows and columns, where
a row-column pair may go to more than one sensor node.
This implies that some of the node pairs may share the same
encryption key. More precisely, a q × q matrix has q(q−1)

2
random and independent numbers. Therefore, it is expected
that any given key will be shared by N(N−1)

q(q−1) links and each
row-column pair may go to N

q nodes.

B. Linear Computational Complexity of Key Generation

The key generation operation for a given link involves the
multiplication of one row of X with a column of Y . If we
assume the size of X is q × m and the size of Y is m × q,
then computing a key requires m multiplications and m − 1
additions. Further this is dependent on the size of matrices X
and Y which in turn depends on the desired level of security.
In the worst case X and Y are of size N ×N and hence key
generation requires N multiplications and N − 1 additions.

III. SECURITY OF THE PROPOSED SCHEME

A. Size of K is N ×N

Assume that matrix K is of size N × N and therefore X
and Y are of sizes N ×m and m×N respectively. The upper
triangle (including the diagonal) of matrix K has N(N+1)

2
elements all of which are generated from 2(N ×m) elements.
For each key there are p possibilities and it is clear that in the
absence of any knowledge of the elements of X and Y , all
the p possibilities for every key remain equally likely.

However, since the columns of Y are being transmitted in
plain text, an eavesdropper can record these columns. Further,
if the eavesdropper is able to listen to N distinct transmissions,
of columns of Y , from N distinct nodes, then there remain N !
possibilities to arrange these columns in matrix Y . However,
this gives no information about matrix X which has N ×m
elements in it.

Now, if the adversary tries to guess the values of elements
in matrix X , then every new row of X gives the adversary
decreasing amount of information. This is because the key
matrix K is symmetric. As a result, the first row of X when
multiplied with Y gives N − 1 unique keys, the second row
of X when multiplied with Y gives N−2 unique keys and so
on. However, to determine all the keys this way, the adversary
will have to determine all the rows of X , i.e. N ×m values
from Zp.

Two possible choices remain for the eavesdropper:
• If m > N then it is more difficult to determine X than

it is to determine the elements of K directly. Therefore,
capturing N columns of Y gives no advantage.

• However if m < N , then determining the first row of
X (m values) will result in N − 1 keys, determining the
second row X (another m values) will result in N −
2 keys and so on. Consequently, an adversary can stop

3

probability from [1, q], where matrix K is a symmetric matrix
of size q × q.

After every sensor is installed with a row-column pair from
X and Y , the sensors can be deployed in the field using any
mode of deployment. Once deployed, each sensor probes its
neighborhood to discover the neighbors and then agree on a
symmetric key as follows.

Key Agreement Phase:
When any two nodes, i and j, wish to agree on an encryp-

tion key, they exchange their columns of Y (in plaintext) and
compute a common key as follows,

Node i computes: Kij = rowi(X) · colj(Y )

and node j computes: Kji = rowj(X) · coli(Y )

As matrix K is symmetric, Kij = Kji. Since a node in the
network has only one row and one column installed on it, the
notation rowi(X) denotes the row of X that was stored on
node i. This must not be confused with row i of X . Similarly,
colj(Y ) is the column of Y assigned to node j.

Fig. 1 show the pictorial representation of matrices X and
Y and fig. 2 illustrates a sensor network in which all the nodes
within the communication range with each other can share an
encryption key. Only a few nodes with their communication
ranges are shown.
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sharing a key decreases to less than 0.0001. The network size
is fixed at N = 1024.

C. Resilience Against Node Compromise

Compromise of nodes leads to greater loss of information
than eavesdropping. However, unlike Blom’s scheme [11], the
proposed algorithm does not possess a threshold property.
Hence, the degradation of network characteristics is graceful
with compromise of nodes. Further, depending on how the
factors of K are computed the scheme can be adapted to
possess a threshold property if desired.

If the size of K is N ×N and each node receives a unique
row-column pair then if an attacker was to compromise m
nodes, he will be able to construct: (N −1)+(N −2)+ . . .+

(N −m) = m ·N − m(m+1)
2 keys (elements) from matrix K.

If the size of K is q × q, q < N then the probability
of construction of all the keys upon L node compromises
will be based on the retrieved L row-column pairs. However,
since q < N not all of these row-column pairs are distinct.
The minimum number of nodes that an adversary will need
to compromise in order to retrieve q distinct row-column
pairs is q nodes. Consequently, for L nodes compromised the
probability that the adversary will see q distinct row-column
pairs at least once is computed as follows:

Suppose in L compromises the adversary does not see all the
q distinct row-column pairs, i.e. at least one pair is missing. In
other words, we can compute all the ways in which L choices
(with repetition) can be made from q−1 possible pairs. Out of
total q pairs there is

(
q

(q−1)

)
ways to choose q−1 pairs. From

each of these possibilities, we can make L random choices
with repetition in (q − 1)L ·

(
q

(q−1)

)
ways. However, we need

to subtract the double counted possibilities which is q2 − 2q.
As a result, the total number of ways, an adversary will fail to
see all possible row-column pairs in L compromises is given
by (q − 1)L ·

(
q

(q−1)

)
− (q2 − 2q). This is out of the total

number of possible ways all choices can be made, i.e. qL.
The probability that an adversary will successfully see all the
pairs in L compromises is then given by,

1−
(q − 1)L ·

(
q

(q−1)

)
− (q2 − 2q)

qL

IV. CONSTRUCTIVE ALGORITHMS TO DETERMINE X AND
Y

Although in general X and Y may be chosen by trial
and error, their determination becomes easier if one of the
following methods is used. The examples below present some
of the different methods to construct X and Y .

1. One method would be to choose Y random and non-
singular and compute X = K · Y −1.

For example, assume a symmetric matrix K of size 3 × 3
and we work mod 11.

Let K =




3 4 6
4 5 2
6 2 1


 and Y =




3 4 8
1 5 2
9 10 4




Then Y −1 =




0 6 8
2 4 5
6 4 0


 and

X =




0 3 0
0 8 2
10 4 3




2. Another example of construction of X and Y where they
are smaller than the size of K is as follows (again working
mod 11).

Let X =




1 3 1
3 4 1
9 9 1
4 6 1
5 1 1




and

Y =




1 1 1 1 1
1 5 3 2 4
1 3 9 4 5


 then

K =




5 8 8 0 7
8 4 2 4 2
8 2 1 9 6
0 4 9 9 0
7 2 6 0 3




Here every node stores 2m = 2 · 3 = 6 elements from Zp.

3. LU factorization may be used.

4. Computing powers of matrices. Assume that matrix K is
diagonalizable; then K = M−1AM where M is a matrix
whose columns are the eigenvectors of K and A is a diagonal
matrix of eigenvalues of K. With such a factorization the
algebra on K reduces to the algebra on the elements of the
diagonal matrix A. For example Kr = M−1ArM and since
A is a diagonal matrix Ar = (ar1, a

r
2, . . . , a

r
q) where ai are the

diagonal elements of A. Then we may factor K as follows:
1) Randomly choose a symmetric diagonalizable matrix K

with elements from the finite field Zp.
2) Randomly choose a element r from the field and com-

pute X = K
1
r and Y = K1− 1

r .
If K is diagonalizable then the rth root can be computed

as discussed above.
In this method, if an adversary captures all the columns of

Y and figures out the layout of the captured columns of Y in
the matrix, then to compute X , he will have to compute the
(r − 1)th root of the matrix Y . However, not knowing the
value of r which was randomly and uniformly chosen from
Zp there are p · (r − 1) possible choices for X .

V. USING COMMUTING MATRICES

If one was to use commuting matrices the requirement of
matrix K being symmetric can be eliminated. This would
require every node to store some additional information that
provides every node pair two different keys that are used for
communication depending on which node initiates the com-
munication. These keys may be hashed together to generate
another key that is used for encryption thus further improving
the security of the system. The algorithm works as follows:

4

Fig. 2. Illustration of a network. We’ve shown the communication ranges with dotted circles for a few nodes (shown in red at the center of the circles). The
dashed lines between nodes represents that a key agreement will take place between these nodes since they are within communication range of the red nodes.
Similarly every node will have its own communication range and it will agree on a key with all nodes in its communication range. Nodes can join and leave
the network at will.

determining the rows of matrix X when determining m
values of that row gives fewer keys than m. At this point
it would be beneficial for the adversary to directly guess
the remaining values in the key matrix K.

This is in addition, however, to determining which of the
N ! ways are the columns of matrix Y arranged and for each
arrangement different possible keys exist.

Moreover, such an attack may be impractical because it
requires an adversary to listen to every transmission of Y that
takes place in the entire network.

B. Size of K is q × q, q < N

Assume that matrix K is of size q × q, q < N , then the
matrices X and Y are of size q ×m and m× q. Since, there
are fewer than N rows and columns, the rows-columns pairs
pre-loaded on the sensors can be pre-loaded randomly with
repetition. As a result, some of the links in the network will
share the same encryption key.

The probability that any two nodes will share the same
key may be computed as follows. Note there are two possible
events that can occur.

1) Two node pairs are assigned the same Kij from the key
matrix.
This may happen because q < N and same keys are
used more than once. Since there are a total of q(q−1)

2
possible keys, the probability that two node pairs will
be assigned the same key is: 1

q(q−1)
2

= 2
q(q−1) .

2) Two node pairs are assigned different Kijs from the key
matrix.
This happens with a probability of 1− 2

q(q−1) . However,
since each Kij is randomly and uniformly picked from
Zp, any two elements of matrix K will be equal with
probability 1

p .

Therefore, the total probability that any two node pairs will
receive the same encryption key is given by:

(1− 2

q(q − 1)
) · 1

p
+

2

q(q − 1)
· 1

where q > 1. When q = 1 the probability of repetition of
the same key is 1 and refers to a master key system.
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Fig. 3. Probability of two node pairs sharing the same key as q is varied
from 2 to N . Size of the key matrix K is q × q.

Figure 3 shows how the probability of sharing the same key
between two node pairs decreases as size of the key matrix K
is increased. We see that at size of q = 200 the probability of



New Key Agreement Techniques for Sensor Networks
INFOCOMMUNICATIONS JOURNAL

MARCH 2015 • VOLUME VII • NUMBER 1 19

5

sharing a key decreases to less than 0.0001. The network size
is fixed at N = 1024.

C. Resilience Against Node Compromise

Compromise of nodes leads to greater loss of information
than eavesdropping. However, unlike Blom’s scheme [11], the
proposed algorithm does not possess a threshold property.
Hence, the degradation of network characteristics is graceful
with compromise of nodes. Further, depending on how the
factors of K are computed the scheme can be adapted to
possess a threshold property if desired.

If the size of K is N ×N and each node receives a unique
row-column pair then if an attacker was to compromise m
nodes, he will be able to construct: (N −1)+(N −2)+ . . .+

(N −m) = m ·N − m(m+1)
2 keys (elements) from matrix K.

If the size of K is q × q, q < N then the probability
of construction of all the keys upon L node compromises
will be based on the retrieved L row-column pairs. However,
since q < N not all of these row-column pairs are distinct.
The minimum number of nodes that an adversary will need
to compromise in order to retrieve q distinct row-column
pairs is q nodes. Consequently, for L nodes compromised the
probability that the adversary will see q distinct row-column
pairs at least once is computed as follows:

Suppose in L compromises the adversary does not see all the
q distinct row-column pairs, i.e. at least one pair is missing. In
other words, we can compute all the ways in which L choices
(with repetition) can be made from q−1 possible pairs. Out of
total q pairs there is

(
q

(q−1)

)
ways to choose q−1 pairs. From

each of these possibilities, we can make L random choices
with repetition in (q − 1)L ·

(
q

(q−1)

)
ways. However, we need

to subtract the double counted possibilities which is q2 − 2q.
As a result, the total number of ways, an adversary will fail to
see all possible row-column pairs in L compromises is given
by (q − 1)L ·
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q
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− (q2 − 2q). This is out of the total

number of possible ways all choices can be made, i.e. qL.
The probability that an adversary will successfully see all the
pairs in L compromises is then given by,
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qL
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Although in general X and Y may be chosen by trial
and error, their determination becomes easier if one of the
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For example, assume a symmetric matrix K of size 3 × 3
and we work mod 11.

Let K =




3 4 6
4 5 2
6 2 1


 and Y =




3 4 8
1 5 2
9 10 4




Then Y −1 =




0 6 8
2 4 5
6 4 0


 and

X =




0 3 0
0 8 2
10 4 3




2. Another example of construction of X and Y where they
are smaller than the size of K is as follows (again working
mod 11).

Let X =




1 3 1
3 4 1
9 9 1
4 6 1
5 1 1




and

Y =




1 1 1 1 1
1 5 3 2 4
1 3 9 4 5


 then

K =




5 8 8 0 7
8 4 2 4 2
8 2 1 9 6
0 4 9 9 0
7 2 6 0 3




Here every node stores 2m = 2 · 3 = 6 elements from Zp.

3. LU factorization may be used.

4. Computing powers of matrices. Assume that matrix K is
diagonalizable; then K = M−1AM where M is a matrix
whose columns are the eigenvectors of K and A is a diagonal
matrix of eigenvalues of K. With such a factorization the
algebra on K reduces to the algebra on the elements of the
diagonal matrix A. For example Kr = M−1ArM and since
A is a diagonal matrix Ar = (ar1, a

r
2, . . . , a

r
q) where ai are the

diagonal elements of A. Then we may factor K as follows:
1) Randomly choose a symmetric diagonalizable matrix K

with elements from the finite field Zp.
2) Randomly choose a element r from the field and com-

pute X = K
1
r and Y = K1− 1

r .
If K is diagonalizable then the rth root can be computed

as discussed above.
In this method, if an adversary captures all the columns of

Y and figures out the layout of the captured columns of Y in
the matrix, then to compute X , he will have to compute the
(r − 1)th root of the matrix Y . However, not knowing the
value of r which was randomly and uniformly chosen from
Zp there are p · (r − 1) possible choices for X .

V. USING COMMUTING MATRICES

If one was to use commuting matrices the requirement of
matrix K being symmetric can be eliminated. This would
require every node to store some additional information that
provides every node pair two different keys that are used for
communication depending on which node initiates the com-
munication. These keys may be hashed together to generate
another key that is used for encryption thus further improving
the security of the system. The algorithm works as follows:

4

Fig. 2. Illustration of a network. We’ve shown the communication ranges with dotted circles for a few nodes (shown in red at the center of the circles). The
dashed lines between nodes represents that a key agreement will take place between these nodes since they are within communication range of the red nodes.
Similarly every node will have its own communication range and it will agree on a key with all nodes in its communication range. Nodes can join and leave
the network at will.

determining the rows of matrix X when determining m
values of that row gives fewer keys than m. At this point
it would be beneficial for the adversary to directly guess
the remaining values in the key matrix K.

This is in addition, however, to determining which of the
N ! ways are the columns of matrix Y arranged and for each
arrangement different possible keys exist.

Moreover, such an attack may be impractical because it
requires an adversary to listen to every transmission of Y that
takes place in the entire network.

B. Size of K is q × q, q < N

Assume that matrix K is of size q × q, q < N , then the
matrices X and Y are of size q ×m and m× q. Since, there
are fewer than N rows and columns, the rows-columns pairs
pre-loaded on the sensors can be pre-loaded randomly with
repetition. As a result, some of the links in the network will
share the same encryption key.

The probability that any two nodes will share the same
key may be computed as follows. Note there are two possible
events that can occur.

1) Two node pairs are assigned the same Kij from the key
matrix.
This may happen because q < N and same keys are
used more than once. Since there are a total of q(q−1)

2
possible keys, the probability that two node pairs will
be assigned the same key is: 1

q(q−1)
2

= 2
q(q−1) .

2) Two node pairs are assigned different Kijs from the key
matrix.
This happens with a probability of 1− 2

q(q−1) . However,
since each Kij is randomly and uniformly picked from
Zp, any two elements of matrix K will be equal with
probability 1

p .

Therefore, the total probability that any two node pairs will
receive the same encryption key is given by:

(1− 2

q(q − 1)
) · 1

p
+

2

q(q − 1)
· 1

where q > 1. When q = 1 the probability of repetition of
the same key is 1 and refers to a master key system.
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Fig. 3. Probability of two node pairs sharing the same key as q is varied
from 2 to N . Size of the key matrix K is q × q.

Figure 3 shows how the probability of sharing the same key
between two node pairs decreases as size of the key matrix K
is increased. We see that at size of q = 200 the probability of
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Pre-deployment
1) Choose two q × q matrices X and Y such that XY =

Y X and Y is symmetric.
2) Randomly pick r from a uniform distribution over [1, q].
3) Assign node i the rth row and column of X and the rth

column of Y .
Assume two nodes i and j wish to agree on a key then the

key agreement proceeds as follows,
1) Node i sends its ith column of Y to node j.
2) Node j sends its jth column of Y to node i.
3) Node i computes Kij = rowi(X) ∗ colj(Y ) and node j

computes Kij = col′i(Y ) ∗ colj(X).
4) Node i computes Kji = col′j(Y ) ∗ coli(X) and node j

computes Kji = rowj(X) ∗ coli(Y ).
Where col′i(Y ) is the column of Y transposed. Figure 4

illustrates the predistribution of rows and columns for node i.

Fig. 4. Predistribution of rows and columns for node i for the case when
XY = Y X and Y is symmetric. The line across the diagonal of matrix Y
indicates the symmetry.

Finding Commuting Matrices X and Y :
Matrix diagonalization may be used to find two such ma-

trices using the following steps:
1) Choose a diagonalizable symmetric matrix Y at random.
2) Diagonalize Y such that Y = M−1DyM , where Dy is

a diagonal matrix with eigenvalues of Y .
3) Randomly pick a diagonal matrix Dx and compute X =

M−1DxM .
The above algorithm generates two matrices that commute

with each other as seen below,

XY = M−1DxMM−1DyM = M−1DxDyM

and

Y X = M−1DyMM−1DxM = M−1DyDxM

Since Dx and Dy are diagonal matrices DxDy = DyDx.
If an eavesdropper is able to listen to q distinct columns of
Y being transmitted and also determine which out of q! ways
they are to be arranged then he can diagonalize Y and retrieve
M . In order to reconstruct all the keys in the network he then
has to guess the values in the diagonal matrix Dx and there
are p possible values for every eigenvalue in Dx.

Unlike the previous algorithm, using commuting matrices
requires X and Y to be square matrices. However, the size of
the matrices may be q × q where q ≤ N . The advantage of
using commuting matrices is that every node pair now shares
two keys that may be used for encryption in following ways:

1) For fast encryption and low computational overhead,
encryption keys are used to seed random number genera-
tors. Then to encrypt data the sequence of random bytes
generated (from the RNG) is XORed with the bytes of
the data and transmitted. However, if the same seed is
used in the RNG for data sent both ways, i.e. from node
i to j and vice versa, then it can lead to a two-time-pad
attack. As a result, the two encryption keys generated:
Kij can be used to seed the RNG for encrypting data
sent from node i to j and Kji can be used for data sent
from j to i.

2) If two-time-pad is of no concern then we could K =
Hash(Kij ||Kji) as the common encryption key be-
tween nodes i and j; where the keys are hashed in a pre-
decided order. This also provides an additional layer of
indirection, using hash functions, for an attacker doing
cryptanalysis on captured encrypted data.

3) Or the two keys could simply be concatenated Kij ||Kji

to increase the key length.
Using commuting matrices increases network resilience as

the attacker would need to determine the entire K matrix rather
than only half of it as is the case when K was symmetric.
Recall that by using commutativity we have eliminated the
requirement of K being symmetric. This is in contrast with
other methods that either implement Blom’s scheme multiple
times to increase the number of keys shared (example to share
two keys, implement Blom’s scheme twice) [12] or Chan et
al.’s scheme [3], called q-composite scheme, that shares at
least q keys between nodes to increase network resilience by
decreasing the key pool size.

The computational complexity, when using commutative
matrices, remains linear as it requires multiplication of a row
and a column for each key.

VI. CONCLUSIONS

We have proposed two algorithms for key agreement be-
tween nodes in a network. The first algorithm factors a
symmetric matrix K into two factors X and Y and the second
algorithm chooses matrix X and Y such that they commute
and Y is symmetric. In the latter method, matrix K need not be
symmetric. We have provided several constructive algorithms
to choose X and Y in order to decrease the computational load
during pre-deployment phase. Key generation only requires the
multiplication of a row and a column of a matrix and is linear
in complexity. The commutative method provides two keys
per node pair that can be used in different ways depending on
security requirements and encryption algorithm used.
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trices using the following steps:
1) Choose a diagonalizable symmetric matrix Y at random.
2) Diagonalize Y such that Y = M−1DyM , where Dy is

a diagonal matrix with eigenvalues of Y .
3) Randomly pick a diagonal matrix Dx and compute X =

M−1DxM .
The above algorithm generates two matrices that commute

with each other as seen below,

XY = M−1DxMM−1DyM = M−1DxDyM

and

Y X = M−1DyMM−1DxM = M−1DyDxM

Since Dx and Dy are diagonal matrices DxDy = DyDx.
If an eavesdropper is able to listen to q distinct columns of
Y being transmitted and also determine which out of q! ways
they are to be arranged then he can diagonalize Y and retrieve
M . In order to reconstruct all the keys in the network he then
has to guess the values in the diagonal matrix Dx and there
are p possible values for every eigenvalue in Dx.

Unlike the previous algorithm, using commuting matrices
requires X and Y to be square matrices. However, the size of
the matrices may be q × q where q ≤ N . The advantage of
using commuting matrices is that every node pair now shares
two keys that may be used for encryption in following ways:

1) For fast encryption and low computational overhead,
encryption keys are used to seed random number genera-
tors. Then to encrypt data the sequence of random bytes
generated (from the RNG) is XORed with the bytes of
the data and transmitted. However, if the same seed is
used in the RNG for data sent both ways, i.e. from node
i to j and vice versa, then it can lead to a two-time-pad
attack. As a result, the two encryption keys generated:
Kij can be used to seed the RNG for encrypting data
sent from node i to j and Kji can be used for data sent
from j to i.

2) If two-time-pad is of no concern then we could K =
Hash(Kij ||Kji) as the common encryption key be-
tween nodes i and j; where the keys are hashed in a pre-
decided order. This also provides an additional layer of
indirection, using hash functions, for an attacker doing
cryptanalysis on captured encrypted data.

3) Or the two keys could simply be concatenated Kij ||Kji

to increase the key length.
Using commuting matrices increases network resilience as

the attacker would need to determine the entire K matrix rather
than only half of it as is the case when K was symmetric.
Recall that by using commutativity we have eliminated the
requirement of K being symmetric. This is in contrast with
other methods that either implement Blom’s scheme multiple
times to increase the number of keys shared (example to share
two keys, implement Blom’s scheme twice) [12] or Chan et
al.’s scheme [3], called q-composite scheme, that shares at
least q keys between nodes to increase network resilience by
decreasing the key pool size.

The computational complexity, when using commutative
matrices, remains linear as it requires multiplication of a row
and a column for each key.

VI. CONCLUSIONS

We have proposed two algorithms for key agreement be-
tween nodes in a network. The first algorithm factors a
symmetric matrix K into two factors X and Y and the second
algorithm chooses matrix X and Y such that they commute
and Y is symmetric. In the latter method, matrix K need not be
symmetric. We have provided several constructive algorithms
to choose X and Y in order to decrease the computational load
during pre-deployment phase. Key generation only requires the
multiplication of a row and a column of a matrix and is linear
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