
Network Coding Based Caching for
Near Real-Time Streaming Media

INFOCOMMUNICATIONS JOURNAL

MARCH 2015 • VOLUME VII • NUMBER 1 7

1

Abstract— During crowded events streaming services generate

high demands in the wireless access networks. In this paper we
present a solution to offload the access network in case of such a
streaming service. We detail the streaming service itself, and our
offload solution based on local caching and network coding. We
introduce a model that allows us to analyze our proposal, we
implement it in a simulation environment and assess it. Finally we
discuss the consequences of several design decisions we made
during our work.

Index Terms—multimedia applications, network
communication, network coding, caching

I. INTRODUCTION

The Internet traffic is dominated by streaming multimedia
content as users demand higher quality video and ubiquitously
available services. With the advent of high performance smart
handheld devices the users expect that their usual services
received on their desktops are available on these smart devices,
too. Thus users can access advanced services from new places
where they start to use their devices on regular basis. On turn,
these new situations generate new demands: once the users get
used to the new scenario, they start to require new, adapted
services.

A typical scenario is a crowded event, where even a few years
ago users could not use their mobile devices due to network
congestion. E.g., it was common that during New Year’s Eve
calls were blocked and only SMS-es went through the
overloaded networks. Similarly, sporting events at remote areas
required a careful design and temporary increase in mobile
access capacity to serve the increased demand. This motivated
us to offload access networks during crowded events for a new
streaming service, specific to this environment.

Users attend crowded events for the live experience, which
combines the feeling of “being there” with the potential of rich
social interactions among fellow users with similar interests.
Nevertheless, until recently the participation at such events
forced the attendants to stop following the online (e.g., live
commentaries, additional info) and broadcasted (e.g., TV)
content. The solution that offers both experiences, live
attendance and online information stream, comes with the

Manuscript submitted September 29, 2014, revised February 22, 2015.
The authors are with the Department of Telecommunications and Media

Informatics, Budapest University of Technology and Economics, Budapest,
Hungary, 1117 Budapest, Magyar Tudosok krt. 2. (e-mail:
{simon|maliosz}@tmit.bme.hu)

introduction of the so called “second screen”.
Second screen originally refers to the use of an online device

(e.g., smartphone, iPad) that doubles the screen of a device
offering “linear” program (e.g., TV, projector). We extend the
meaning of this term, calling second screen any online device
that offers additional content associated with a live event,
attended by the user of the device. Current access networks are
hard pressed to provide the required QoS, because attendees of
live events continue using their smart devices as second screens
(to consume more and more multimedia content). In this
environment, shortage of available capacity seems to perpetuate
at least until the mid-2020s, when 5G technologies will mature.
The focus of the operators is on assuring the basic service, not
to mention any new service with additional bandwidth demand.
Therefore offloading the wireless access currently is very
important for the operators, and it will be so for the coming
decade.

The data to be distributed in such an environment is not only
the real-time, live multimedia stream, but also extra, add-on
content, which has less strict delay constraints, and is related to
recent events (e.g., replays, statistical analysis of the game,
etc.). Still, their importance is higher soon after the original
event happened (e.g., a goal right after it was scored), that is
why we call them near real-time events. We propose a novel
streaming service specific to this environment that can be
offered on top of classical streaming media services, consisting
of replayed live scenes. At the core of our solution to offload
the access network delivering this service is the distributed local
caching of the data, made reliable and versatile by the
introduction of network coding techniques. To best of our
knowledge, network coding was not proposed before to support
such caching solutions (also see section III-C). The motivation
behind such novel add-on services are not only recognized by
recent research projects [1], but also attract major players from
the streaming live event distribution industry [2].

In the next section we present related work that we relied on
in our research. Then we present several scenario variants for
our proposal and introduce the novel near real-time data
delivering service that can be offered on top of classical
streaming media services. In section IV we present a model that
will allow us to analyze its behavior, and we evaluate it in
section V. Finally we conclude our paper.

Network Coding Based Caching for Near Real-
Time Streaming Media

Csaba Simon, Markosz Maliosz

1

Abstract— During crowded events streaming services generate

high demands in the wireless access networks. In this paper we
present a solution to offload the access network in case of such a
streaming service. We detail the streaming service itself, and our
offload solution based on local caching and network coding. We
introduce a model that allows us to analyze our proposal, we
implement it in a simulation environment and assess it. Finally we
discuss the consequences of several design decisions we made
during our work.

Index Terms—multimedia applications, network
communication, network coding, caching

I. INTRODUCTION

The Internet traffic is dominated by streaming multimedia
content as users demand higher quality video and ubiquitously
available services. With the advent of high performance smart
handheld devices the users expect that their usual services
received on their desktops are available on these smart devices,
too. Thus users can access advanced services from new places
where they start to use their devices on regular basis. On turn,
these new situations generate new demands: once the users get
used to the new scenario, they start to require new, adapted
services.

A typical scenario is a crowded event, where even a few years
ago users could not use their mobile devices due to network
congestion. E.g., it was common that during New Year’s Eve
calls were blocked and only SMS-es went through the
overloaded networks. Similarly, sporting events at remote areas
required a careful design and temporary increase in mobile
access capacity to serve the increased demand. This motivated
us to offload access networks during crowded events for a new
streaming service, specific to this environment.

Users attend crowded events for the live experience, which
combines the feeling of “being there” with the potential of rich
social interactions among fellow users with similar interests.
Nevertheless, until recently the participation at such events
forced the attendants to stop following the online (e.g., live
commentaries, additional info) and broadcasted (e.g., TV)
content. The solution that offers both experiences, live
attendance and online information stream, comes with the

Manuscript submitted September 29, 2014, revised February 22, 2015.
The authors are with the Department of Telecommunications and Media

Informatics, Budapest University of Technology and Economics, Budapest,
Hungary, 1117 Budapest, Magyar Tudosok krt. 2. (e-mail:
{simon|maliosz}@tmit.bme.hu)

introduction of the so called “second screen”.
Second screen originally refers to the use of an online device

(e.g., smartphone, iPad) that doubles the screen of a device
offering “linear” program (e.g., TV, projector). We extend the
meaning of this term, calling second screen any online device
that offers additional content associated with a live event,
attended by the user of the device. Current access networks are
hard pressed to provide the required QoS, because attendees of
live events continue using their smart devices as second screens
(to consume more and more multimedia content). In this
environment, shortage of available capacity seems to perpetuate
at least until the mid-2020s, when 5G technologies will mature.
The focus of the operators is on assuring the basic service, not
to mention any new service with additional bandwidth demand.
Therefore offloading the wireless access currently is very
important for the operators, and it will be so for the coming
decade.

The data to be distributed in such an environment is not only
the real-time, live multimedia stream, but also extra, add-on
content, which has less strict delay constraints, and is related to
recent events (e.g., replays, statistical analysis of the game,
etc.). Still, their importance is higher soon after the original
event happened (e.g., a goal right after it was scored), that is
why we call them near real-time events. We propose a novel
streaming service specific to this environment that can be
offered on top of classical streaming media services, consisting
of replayed live scenes. At the core of our solution to offload
the access network delivering this service is the distributed local
caching of the data, made reliable and versatile by the
introduction of network coding techniques. To best of our
knowledge, network coding was not proposed before to support
such caching solutions (also see section III-C). The motivation
behind such novel add-on services are not only recognized by
recent research projects [1], but also attract major players from
the streaming live event distribution industry [2].

In the next section we present related work that we relied on
in our research. Then we present several scenario variants for
our proposal and introduce the novel near real-time data
delivering service that can be offered on top of classical
streaming media services. In section IV we present a model that
will allow us to analyze its behavior, and we evaluate it in
section V. Finally we conclude our paper.

Network Coding Based Caching for Near Real-
Time Streaming Media

Csaba Simon, Markosz Maliosz

1

Abstract— During crowded events streaming services generate

high demands in the wireless access networks. In this paper we
present a solution to offload the access network in case of such a
streaming service. We detail the streaming service itself, and our
offload solution based on local caching and network coding. We
introduce a model that allows us to analyze our proposal, we
implement it in a simulation environment and assess it. Finally we
discuss the consequences of several design decisions we made
during our work.

Index Terms—multimedia applications, network
communication, network coding, caching

I. INTRODUCTION

The Internet traffic is dominated by streaming multimedia
content as users demand higher quality video and ubiquitously
available services. With the advent of high performance smart
handheld devices the users expect that their usual services
received on their desktops are available on these smart devices,
too. Thus users can access advanced services from new places
where they start to use their devices on regular basis. On turn,
these new situations generate new demands: once the users get
used to the new scenario, they start to require new, adapted
services.

A typical scenario is a crowded event, where even a few years
ago users could not use their mobile devices due to network
congestion. E.g., it was common that during New Year’s Eve
calls were blocked and only SMS-es went through the
overloaded networks. Similarly, sporting events at remote areas
required a careful design and temporary increase in mobile
access capacity to serve the increased demand. This motivated
us to offload access networks during crowded events for a new
streaming service, specific to this environment.

Users attend crowded events for the live experience, which
combines the feeling of “being there” with the potential of rich
social interactions among fellow users with similar interests.
Nevertheless, until recently the participation at such events
forced the attendants to stop following the online (e.g., live
commentaries, additional info) and broadcasted (e.g., TV)
content. The solution that offers both experiences, live
attendance and online information stream, comes with the

Manuscript submitted September 29, 2014, revised February 22, 2015.
The authors are with the Department of Telecommunications and Media

Informatics, Budapest University of Technology and Economics, Budapest,
Hungary, 1117 Budapest, Magyar Tudosok krt. 2. (e-mail:
{simon|maliosz}@tmit.bme.hu)

introduction of the so called “second screen”.
Second screen originally refers to the use of an online device

(e.g., smartphone, iPad) that doubles the screen of a device
offering “linear” program (e.g., TV, projector). We extend the
meaning of this term, calling second screen any online device
that offers additional content associated with a live event,
attended by the user of the device. Current access networks are
hard pressed to provide the required QoS, because attendees of
live events continue using their smart devices as second screens
(to consume more and more multimedia content). In this
environment, shortage of available capacity seems to perpetuate
at least until the mid-2020s, when 5G technologies will mature.
The focus of the operators is on assuring the basic service, not
to mention any new service with additional bandwidth demand.
Therefore offloading the wireless access currently is very
important for the operators, and it will be so for the coming
decade.

The data to be distributed in such an environment is not only
the real-time, live multimedia stream, but also extra, add-on
content, which has less strict delay constraints, and is related to
recent events (e.g., replays, statistical analysis of the game,
etc.). Still, their importance is higher soon after the original
event happened (e.g., a goal right after it was scored), that is
why we call them near real-time events. We propose a novel
streaming service specific to this environment that can be
offered on top of classical streaming media services, consisting
of replayed live scenes. At the core of our solution to offload
the access network delivering this service is the distributed local
caching of the data, made reliable and versatile by the
introduction of network coding techniques. To best of our
knowledge, network coding was not proposed before to support
such caching solutions (also see section III-C). The motivation
behind such novel add-on services are not only recognized by
recent research projects [1], but also attract major players from
the streaming live event distribution industry [2].

In the next section we present related work that we relied on
in our research. Then we present several scenario variants for
our proposal and introduce the novel near real-time data
delivering service that can be offered on top of classical
streaming media services. In section IV we present a model that
will allow us to analyze its behavior, and we evaluate it in
section V. Finally we conclude our paper.

Network Coding Based Caching for Near Real-
Time Streaming Media

Csaba Simon, Markosz Maliosz

1

Abstract— During crowded events streaming services generate

high demands in the wireless access networks. In this paper we
present a solution to offload the access network in case of such a
streaming service. We detail the streaming service itself, and our
offload solution based on local caching and network coding. We
introduce a model that allows us to analyze our proposal, we
implement it in a simulation environment and assess it. Finally we
discuss the consequences of several design decisions we made
during our work.

Index Terms—multimedia applications, network
communication, network coding, caching

I. INTRODUCTION

The Internet traffic is dominated by streaming multimedia
content as users demand higher quality video and ubiquitously
available services. With the advent of high performance smart
handheld devices the users expect that their usual services
received on their desktops are available on these smart devices,
too. Thus users can access advanced services from new places
where they start to use their devices on regular basis. On turn,
these new situations generate new demands: once the users get
used to the new scenario, they start to require new, adapted
services.

A typical scenario is a crowded event, where even a few years
ago users could not use their mobile devices due to network
congestion. E.g., it was common that during New Year’s Eve
calls were blocked and only SMS-es went through the
overloaded networks. Similarly, sporting events at remote areas
required a careful design and temporary increase in mobile
access capacity to serve the increased demand. This motivated
us to offload access networks during crowded events for a new
streaming service, specific to this environment.

Users attend crowded events for the live experience, which
combines the feeling of “being there” with the potential of rich
social interactions among fellow users with similar interests.
Nevertheless, until recently the participation at such events
forced the attendants to stop following the online (e.g., live
commentaries, additional info) and broadcasted (e.g., TV)
content. The solution that offers both experiences, live
attendance and online information stream, comes with the

Manuscript submitted September 29, 2014, revised February 22, 2015.
The authors are with the Department of Telecommunications and Media

Informatics, Budapest University of Technology and Economics, Budapest,
Hungary, 1117 Budapest, Magyar Tudosok krt. 2. (e-mail:
{simon|maliosz}@tmit.bme.hu)

introduction of the so called “second screen”.
Second screen originally refers to the use of an online device

(e.g., smartphone, iPad) that doubles the screen of a device
offering “linear” program (e.g., TV, projector). We extend the
meaning of this term, calling second screen any online device
that offers additional content associated with a live event,
attended by the user of the device. Current access networks are
hard pressed to provide the required QoS, because attendees of
live events continue using their smart devices as second screens
(to consume more and more multimedia content). In this
environment, shortage of available capacity seems to perpetuate
at least until the mid-2020s, when 5G technologies will mature.
The focus of the operators is on assuring the basic service, not
to mention any new service with additional bandwidth demand.
Therefore offloading the wireless access currently is very
important for the operators, and it will be so for the coming
decade.

The data to be distributed in such an environment is not only
the real-time, live multimedia stream, but also extra, add-on
content, which has less strict delay constraints, and is related to
recent events (e.g., replays, statistical analysis of the game,
etc.). Still, their importance is higher soon after the original
event happened (e.g., a goal right after it was scored), that is
why we call them near real-time events. We propose a novel
streaming service specific to this environment that can be
offered on top of classical streaming media services, consisting
of replayed live scenes. At the core of our solution to offload
the access network delivering this service is the distributed local
caching of the data, made reliable and versatile by the
introduction of network coding techniques. To best of our
knowledge, network coding was not proposed before to support
such caching solutions (also see section III-C). The motivation
behind such novel add-on services are not only recognized by
recent research projects [1], but also attract major players from
the streaming live event distribution industry [2].

In the next section we present related work that we relied on
in our research. Then we present several scenario variants for
our proposal and introduce the novel near real-time data
delivering service that can be offered on top of classical
streaming media services. In section IV we present a model that
will allow us to analyze its behavior, and we evaluate it in
section V. Finally we conclude our paper.

Network Coding Based Caching for Near Real-
Time Streaming Media

Csaba Simon, Markosz Maliosz

1

Abstract— During crowded events streaming services generate

high demands in the wireless access networks. In this paper we
present a solution to offload the access network in case of such a
streaming service. We detail the streaming service itself, and our
offload solution based on local caching and network coding. We
introduce a model that allows us to analyze our proposal, we
implement it in a simulation environment and assess it. Finally we
discuss the consequences of several design decisions we made
during our work.

Index Terms—multimedia applications, network
communication, network coding, caching

I. INTRODUCTION

The Internet traffic is dominated by streaming multimedia
content as users demand higher quality video and ubiquitously
available services. With the advent of high performance smart
handheld devices the users expect that their usual services
received on their desktops are available on these smart devices,
too. Thus users can access advanced services from new places
where they start to use their devices on regular basis. On turn,
these new situations generate new demands: once the users get
used to the new scenario, they start to require new, adapted
services.

A typical scenario is a crowded event, where even a few years
ago users could not use their mobile devices due to network
congestion. E.g., it was common that during New Year’s Eve
calls were blocked and only SMS-es went through the
overloaded networks. Similarly, sporting events at remote areas
required a careful design and temporary increase in mobile
access capacity to serve the increased demand. This motivated
us to offload access networks during crowded events for a new
streaming service, specific to this environment.

Users attend crowded events for the live experience, which
combines the feeling of “being there” with the potential of rich
social interactions among fellow users with similar interests.
Nevertheless, until recently the participation at such events
forced the attendants to stop following the online (e.g., live
commentaries, additional info) and broadcasted (e.g., TV)
content. The solution that offers both experiences, live
attendance and online information stream, comes with the

Manuscript submitted September 29, 2014, revised February 22, 2015.
The authors are with the Department of Telecommunications and Media

Informatics, Budapest University of Technology and Economics, Budapest,
Hungary, 1117 Budapest, Magyar Tudosok krt. 2. (e-mail:
{simon|maliosz}@tmit.bme.hu)

introduction of the so called “second screen”.
Second screen originally refers to the use of an online device

(e.g., smartphone, iPad) that doubles the screen of a device
offering “linear” program (e.g., TV, projector). We extend the
meaning of this term, calling second screen any online device
that offers additional content associated with a live event,
attended by the user of the device. Current access networks are
hard pressed to provide the required QoS, because attendees of
live events continue using their smart devices as second screens
(to consume more and more multimedia content). In this
environment, shortage of available capacity seems to perpetuate
at least until the mid-2020s, when 5G technologies will mature.
The focus of the operators is on assuring the basic service, not
to mention any new service with additional bandwidth demand.
Therefore offloading the wireless access currently is very
important for the operators, and it will be so for the coming
decade.

The data to be distributed in such an environment is not only
the real-time, live multimedia stream, but also extra, add-on
content, which has less strict delay constraints, and is related to
recent events (e.g., replays, statistical analysis of the game,
etc.). Still, their importance is higher soon after the original
event happened (e.g., a goal right after it was scored), that is
why we call them near real-time events. We propose a novel
streaming service specific to this environment that can be
offered on top of classical streaming media services, consisting
of replayed live scenes. At the core of our solution to offload
the access network delivering this service is the distributed local
caching of the data, made reliable and versatile by the
introduction of network coding techniques. To best of our
knowledge, network coding was not proposed before to support
such caching solutions (also see section III-C). The motivation
behind such novel add-on services are not only recognized by
recent research projects [1], but also attract major players from
the streaming live event distribution industry [2].

In the next section we present related work that we relied on
in our research. Then we present several scenario variants for
our proposal and introduce the novel near real-time data
delivering service that can be offered on top of classical
streaming media services. In section IV we present a model that
will allow us to analyze its behavior, and we evaluate it in
section V. Finally we conclude our paper.

Network Coding Based Caching for Near Real-
Time Streaming Media

Csaba Simon, Markosz Maliosz

1

Abstract— During crowded events streaming services generate

high demands in the wireless access networks. In this paper we
present a solution to offload the access network in case of such a
streaming service. We detail the streaming service itself, and our
offload solution based on local caching and network coding. We
introduce a model that allows us to analyze our proposal, we
implement it in a simulation environment and assess it. Finally we
discuss the consequences of several design decisions we made
during our work.

Index Terms—multimedia applications, network
communication, network coding, caching

I. INTRODUCTION

The Internet traffic is dominated by streaming multimedia
content as users demand higher quality video and ubiquitously
available services. With the advent of high performance smart
handheld devices the users expect that their usual services
received on their desktops are available on these smart devices,
too. Thus users can access advanced services from new places
where they start to use their devices on regular basis. On turn,
these new situations generate new demands: once the users get
used to the new scenario, they start to require new, adapted
services.

A typical scenario is a crowded event, where even a few years
ago users could not use their mobile devices due to network
congestion. E.g., it was common that during New Year’s Eve
calls were blocked and only SMS-es went through the
overloaded networks. Similarly, sporting events at remote areas
required a careful design and temporary increase in mobile
access capacity to serve the increased demand. This motivated
us to offload access networks during crowded events for a new
streaming service, specific to this environment.

Users attend crowded events for the live experience, which
combines the feeling of “being there” with the potential of rich
social interactions among fellow users with similar interests.
Nevertheless, until recently the participation at such events
forced the attendants to stop following the online (e.g., live
commentaries, additional info) and broadcasted (e.g., TV)
content. The solution that offers both experiences, live
attendance and online information stream, comes with the

Manuscript submitted September 29, 2014, revised February 22, 2015.
The authors are with the Department of Telecommunications and Media

Informatics, Budapest University of Technology and Economics, Budapest,
Hungary, 1117 Budapest, Magyar Tudosok krt. 2. (e-mail:
{simon|maliosz}@tmit.bme.hu)

introduction of the so called “second screen”.
Second screen originally refers to the use of an online device

(e.g., smartphone, iPad) that doubles the screen of a device
offering “linear” program (e.g., TV, projector). We extend the
meaning of this term, calling second screen any online device
that offers additional content associated with a live event,
attended by the user of the device. Current access networks are
hard pressed to provide the required QoS, because attendees of
live events continue using their smart devices as second screens
(to consume more and more multimedia content). In this
environment, shortage of available capacity seems to perpetuate
at least until the mid-2020s, when 5G technologies will mature.
The focus of the operators is on assuring the basic service, not
to mention any new service with additional bandwidth demand.
Therefore offloading the wireless access currently is very
important for the operators, and it will be so for the coming
decade.

The data to be distributed in such an environment is not only
the real-time, live multimedia stream, but also extra, add-on
content, which has less strict delay constraints, and is related to
recent events (e.g., replays, statistical analysis of the game,
etc.). Still, their importance is higher soon after the original
event happened (e.g., a goal right after it was scored), that is
why we call them near real-time events. We propose a novel
streaming service specific to this environment that can be
offered on top of classical streaming media services, consisting
of replayed live scenes. At the core of our solution to offload
the access network delivering this service is the distributed local
caching of the data, made reliable and versatile by the
introduction of network coding techniques. To best of our
knowledge, network coding was not proposed before to support
such caching solutions (also see section III-C). The motivation
behind such novel add-on services are not only recognized by
recent research projects [1], but also attract major players from
the streaming live event distribution industry [2].

In the next section we present related work that we relied on
in our research. Then we present several scenario variants for
our proposal and introduce the novel near real-time data
delivering service that can be offered on top of classical
streaming media services. In section IV we present a model that
will allow us to analyze its behavior, and we evaluate it in
section V. Finally we conclude our paper.

Network Coding Based Caching for Near Real-
Time Streaming Media

Csaba Simon, Markosz Maliosz

Network Coding Based Caching for
Near Real-Time Streaming Media

MARCH 2015 • VOLUME VII • NUMBER 18

INFOCOMMUNICATIONS JOURNAL

2

II. COMMUNICATION IN THE LOCAL WIRELESS DOMAIN
The support of new service types in such a challenging

environment as crowded spaces needs a complex approach,
which relies on results from several research areas of
communications. In this section we briefly introduce the main
aspects that influence the most our proposal and are referenced
in later Sections during the definition of the model of our
proposal. Specifically, the wireless technologies define the
limitations of direct inter-node communication, while network
coding ensures the flexibility and robustness of local data
distribution.

A. Offloading the Local Wireless Access
Smartphones have several wireless interfaces that can be

used to achieve direct communication. The natural choice is
WiFi, with its adhoc variant. WiFi adhoc was very popular
among researchers in the laptop era. Lots of mobile ad hoc
protocols (MANET) were prototyped and investigated using
such connections. Unfortunately this technology is not
supported anymore by the vendors, although some Android
smartphone models still can be tweaked to work in adhoc mode.
The main advantage of the ad hoc mode is that it is very flexible.

Officially the replacement technology of the WiFi ad hoc
mode is the WiFi Direct [3]. Nevertheless, the latter comes with
some limitations, but these do not affect our scenarios. Both
technologies have a different problem, too: the interfaces can
work only in one WiFi mode only. Nevertheless, for modelling
purposes we can use the WiFi Direct interface, as most of the
community is familiar with this technology. Note that in real
life deployments the local networking connection might be one
of the UMTS/LTE technologies (e.g., using femtocells). Then
the WiFi interface of the smartphone is available to support our
service.

A different option might be the new variants of Bluetooth.
The advantage is that typically this interface is not used, but it
has lower capacity and it is harder to set up a link.

Finally we have to mention the promising new LTE variant,
the LTE Direct [4] (or LTE D2D), which offers direct
connectivity in a non-WiFi band, but it will cost more, as
operates in a licensed band.

B. Network Coding
Network coding is a technique that, in contrast to channel

coding, “allows and encourages the mixing of data at
intermediate network nodes”, instead of just encoding messages
in a redundant way, allowing the network to have a maximum
flow of information achieving a larger throughput [5]. With
network coding, information transmitted from a source can be
received by the receivers, but it can also be inferred or decoded.
Intermediate nodes are still able to forward information but if it
is the case, the node can combine different received streams of
information into just one and transmit it to its outgoing nodes.

The fixed version of network coding uses simpler coding
techniques (e.g., bitwise XOR-ing the packets of the involved
stream(s)), making the flow always encodable and decodable,
however this advantage comes with the downside of having to
define the structure and the number of participants of the entire

network previously. There is an alternative that follows a
random behavior [6], where nodes assign coefficients to each
packet randomly and according to the finite field used, there is
a probability of these coefficients being decodable. Using
random network coding all nodes are independent and
randomized, without the need of any knowledge of the rest of
the network. Intermediate nodes build a linear combination of
incoming messages that then transmit on each on their outgoing
links. Differently than the fixed method (e.g., bitwise XOR-
ing), this combination uses independently and randomly chosen
coefficients over a finite field. By allowing this kind of local
encoding under a sufficiently large Galois field (i.e. finite field),
the received coded blocks are decodable with a very high
probability at the sink peers, on the order of the inverse of the
size of the finite field [7].

The first practical wireless network coding scheme designed
to deal with inter-flow traffic is also based on Random Linear
Network Coding (RLNC) [8]. It exploits the shared nature of
wireless medium and combines available data chunks with ones
overheard from neighbors to restore the original information.
Although it significantly improves network throughput, it is
limited to situations where multiple streams cross the same
network segment. A different approach uses RLNC to encode
data within the same flow [9]. This intra-flow network coding
improves the performance of the network over wireless links.

We divide the stream in generations. Only packets from a
generation are linearly combined (encoded), thus at the
receiving end enough linearly independent packets from a
generation should be collected to be able to decode the content.
For the streaming service it acts as a time window, because all
packets must arrive before the playout of that particular
encoded sequence can start. Any encoded packet belonging to
a generation is useful (until we receive enough of them), the
packets are not ordered, which simplifies the timing at the
receiver side.

Network Coding was mostly proposed to be used in
information distribution [10], multicast [11] and data averaging
[12], which assures the usage in distributed sensor network data
collection as well.

III. CACHING OF STREAMING MEDIA AT THE END NODES

A. Crowded Event Scenarios
We have identified three different scenarios for crowded

events. All three scenarios offer a solid business model to build
on and attract dedicated users who have the motivation to be
actively involved in the content consumption process. E.g., they
are interested in the details of the performers, want to know
previous stories about the protagonists, etc. This offers a good
audience for our proposed service.

The first scenario is the open air city festival, where attendees
have access to multiple scenes and several selling and catering
locations within a geographically limited area. Note that such
events might become very congested, especially around sites of
interest. We will refer to this scenario as the “festival” one.

A similarly crowded scenario is offered by the stadiums
(“stadium” scenario). The main difference is that in the

3

stadiums the participants are bound to their seats and typically
these events last for only a few hours. Therefore the people are
not moving as much as in the previous scenario.

Combination of the previous two scenarios are the open air
sporting events (bicycle tour, triathlon, etc). In such scenarios
the attendance is scattered along the track, but usually they form
small groups of people at interesting or spectacular portions of
the track. Due to the largest such cycling event, (Tour de
France), we will refer to this scenario as the “Tour” scenario.

Note that we expect different user behaviors and topologies
in each of these scenarios, as detailed later in sub-section V-C.

B. Streaming Media Services
The traffic volume of streaming media had exceeded that of

any other traffic type, including peer-to-peer or web access and
researchers tried to reduce its bandwidth demand by various
methods, including caching. There is a vast available literature
in this field. In [17] we highlighted the most important ones.
The reader interested in further details of streaming video
caching is directed to a thorough overview of this field [14].

Our proposal is an additional service to extend the original
streaming service. Currently replays are broadcasted within the
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering
replays close to the moment in time when it originally happened
(e.g., 100 minutes), which happens in a near real time fashion
(in the worst case). In lots of cases the users want to re-watch
the missed content, too. But in such cases only some special
moments are of high interest, as the user then wants to resume
and follow the original live content. Therefore recording the
whole stream and playing it with a constant lag is not an option.
In this case it is better to cache such short sequences from the
live stream and make it available for instant replay. This
caching service is detailed in the next sub-section.

C. Caching of the Replayed Content
In this section we introduce our solution for near real-time

media streaming that also offloads the wireless access.
The load in the wireless access is decreased by the use of

network coding and stretching the lifetime of the network
encoded packets somewhere in the network distributed in end
devices or well-placed points in the distribution/access domain.
The cache distribution is implemented primarily on the user's
devices.

This scenario is depicted in Fig. 1. The original live
streaming media is distributed by the APi Access Points. The
nodes receiving the data encode it and cache it locally (dark
gray stars –S1, …). Any time a node (light gray star) wants a
replay, they will have the data chunks readily available in their
local mesh network.

As already mentioned, the nodes should organize themselves
to find the caches, this can be done using techniques used by
peer-to-peer applications [13]. The advantage is that the
neighbor list maintenance can be supported by the APs with
limited extra costs in terms of bandwidth usage (e.g.,
neighbouring APs can exchange the list of connected devices
that act as caches and broadcast that list periodically for all).

Fig. 1. Media streaming with caching

Also note that the direct node-to-node control traffic is not
affecting directly the AP (for details also see sub-section V-A).
In our scenario each node is attached to one AP and additionally
it can communicate with several fellow nodes from its. We do
not analyze the technological details, but two possible
alternatives for such local communications to be largely
adopted in the coming years are the WiFi Direct [3] and LTE
Direct [4].

In our solution we use additional wireless sessions to receive
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions;
some of these collisions are hidden by lower layers, others will
result in packet losses. At higher layers (networking and above)
these packet losses are perceived as a lower bandwidth. We
measured the effect of this parallel communication, as
described in section 5.1 and we used the results in our
simulations. Thus during the evaluation of our model we take
into account the impact of the addition of cache-to-node
sessions through the modified data transfer rates.

IV. MODELING THE CACHE BASED STREAMING SERVICE

A. Network Coding Based Caching
From our model’s perspective the important thing is to have

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account
that a given node cannot communicate directly with every
neighbor, the degree of connectivity is upper bounded.
Currently the most used file distribution is BitTorrent, and the
most used p2p streaming application (SopCast) is based on the
same principles [21]. In BitTorrent only 5 slots are available for
uploading data. The goal of this limitation is to protect the
uploaders (i.e., the cache) from overload.

We consider that the potential coverage areas of the APs will
be much larger than the area they accept connection requests
from. Therefore, if there is a node somewhere at the border of
two (or more) neighbouring AP coverage areas, then it can be
identified by the respective APs. Based on that they can provide
this node with the necessary information about cached content
within its reach (but it will not “spam” this node with the list of
far distant caches). The request statistics for a given replay or
generally, for this type of service and similar statistics specific
to streaming services can be computed in the background

3

stadiums the participants are bound to their seats and typically
these events last for only a few hours. Therefore the people are
not moving as much as in the previous scenario.

Combination of the previous two scenarios are the open air
sporting events (bicycle tour, triathlon, etc). In such scenarios
the attendance is scattered along the track, but usually they form
small groups of people at interesting or spectacular portions of
the track. Due to the largest such cycling event, (Tour de
France), we will refer to this scenario as the “Tour” scenario.

Note that we expect different user behaviors and topologies
in each of these scenarios, as detailed later in sub-section V-C.

B. Streaming Media Services
The traffic volume of streaming media had exceeded that of

any other traffic type, including peer-to-peer or web access and
researchers tried to reduce its bandwidth demand by various
methods, including caching. There is a vast available literature
in this field. In [17] we highlighted the most important ones.
The reader interested in further details of streaming video
caching is directed to a thorough overview of this field [14].

Our proposal is an additional service to extend the original
streaming service. Currently replays are broadcasted within the
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering
replays close to the moment in time when it originally happened
(e.g., 100 minutes), which happens in a near real time fashion
(in the worst case). In lots of cases the users want to re-watch
the missed content, too. But in such cases only some special
moments are of high interest, as the user then wants to resume
and follow the original live content. Therefore recording the
whole stream and playing it with a constant lag is not an option.
In this case it is better to cache such short sequences from the
live stream and make it available for instant replay. This
caching service is detailed in the next sub-section.

C. Caching of the Replayed Content
In this section we introduce our solution for near real-time

media streaming that also offloads the wireless access.
The load in the wireless access is decreased by the use of

network coding and stretching the lifetime of the network
encoded packets somewhere in the network distributed in end
devices or well-placed points in the distribution/access domain.
The cache distribution is implemented primarily on the user's
devices.

This scenario is depicted in Fig. 1. The original live
streaming media is distributed by the APi Access Points. The
nodes receiving the data encode it and cache it locally (dark
gray stars –S1, …). Any time a node (light gray star) wants a
replay, they will have the data chunks readily available in their
local mesh network.

As already mentioned, the nodes should organize themselves
to find the caches, this can be done using techniques used by
peer-to-peer applications [13]. The advantage is that the
neighbor list maintenance can be supported by the APs with
limited extra costs in terms of bandwidth usage (e.g.,
neighbouring APs can exchange the list of connected devices
that act as caches and broadcast that list periodically for all).

Fig. 1. Media streaming with caching

Also note that the direct node-to-node control traffic is not
affecting directly the AP (for details also see sub-section V-A).
In our scenario each node is attached to one AP and additionally
it can communicate with several fellow nodes from its. We do
not analyze the technological details, but two possible
alternatives for such local communications to be largely
adopted in the coming years are the WiFi Direct [3] and LTE
Direct [4].

In our solution we use additional wireless sessions to receive
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions;
some of these collisions are hidden by lower layers, others will
result in packet losses. At higher layers (networking and above)
these packet losses are perceived as a lower bandwidth. We
measured the effect of this parallel communication, as
described in section 5.1 and we used the results in our
simulations. Thus during the evaluation of our model we take
into account the impact of the addition of cache-to-node
sessions through the modified data transfer rates.

IV. MODELING THE CACHE BASED STREAMING SERVICE

A. Network Coding Based Caching
From our model’s perspective the important thing is to have

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account
that a given node cannot communicate directly with every
neighbor, the degree of connectivity is upper bounded.
Currently the most used file distribution is BitTorrent, and the
most used p2p streaming application (SopCast) is based on the
same principles [21]. In BitTorrent only 5 slots are available for
uploading data. The goal of this limitation is to protect the
uploaders (i.e., the cache) from overload.

We consider that the potential coverage areas of the APs will
be much larger than the area they accept connection requests
from. Therefore, if there is a node somewhere at the border of
two (or more) neighbouring AP coverage areas, then it can be
identified by the respective APs. Based on that they can provide
this node with the necessary information about cached content
within its reach (but it will not “spam” this node with the list of
far distant caches). The request statistics for a given replay or
generally, for this type of service and similar statistics specific
to streaming services can be computed in the background

3

stadiums the participants are bound to their seats and typically
these events last for only a few hours. Therefore the people are
not moving as much as in the previous scenario.

Combination of the previous two scenarios are the open air
sporting events (bicycle tour, triathlon, etc). In such scenarios
the attendance is scattered along the track, but usually they form
small groups of people at interesting or spectacular portions of
the track. Due to the largest such cycling event, (Tour de
France), we will refer to this scenario as the “Tour” scenario.

Note that we expect different user behaviors and topologies
in each of these scenarios, as detailed later in sub-section V-C.

B. Streaming Media Services
The traffic volume of streaming media had exceeded that of

any other traffic type, including peer-to-peer or web access and
researchers tried to reduce its bandwidth demand by various
methods, including caching. There is a vast available literature
in this field. In [17] we highlighted the most important ones.
The reader interested in further details of streaming video
caching is directed to a thorough overview of this field [14].

Our proposal is an additional service to extend the original
streaming service. Currently replays are broadcasted within the
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering
replays close to the moment in time when it originally happened
(e.g., 100 minutes), which happens in a near real time fashion
(in the worst case). In lots of cases the users want to re-watch
the missed content, too. But in such cases only some special
moments are of high interest, as the user then wants to resume
and follow the original live content. Therefore recording the
whole stream and playing it with a constant lag is not an option.
In this case it is better to cache such short sequences from the
live stream and make it available for instant replay. This
caching service is detailed in the next sub-section.

C. Caching of the Replayed Content
In this section we introduce our solution for near real-time

media streaming that also offloads the wireless access.
The load in the wireless access is decreased by the use of

network coding and stretching the lifetime of the network
encoded packets somewhere in the network distributed in end
devices or well-placed points in the distribution/access domain.
The cache distribution is implemented primarily on the user's
devices.

This scenario is depicted in Fig. 1. The original live
streaming media is distributed by the APi Access Points. The
nodes receiving the data encode it and cache it locally (dark
gray stars –S1, …). Any time a node (light gray star) wants a
replay, they will have the data chunks readily available in their
local mesh network.

As already mentioned, the nodes should organize themselves
to find the caches, this can be done using techniques used by
peer-to-peer applications [13]. The advantage is that the
neighbor list maintenance can be supported by the APs with
limited extra costs in terms of bandwidth usage (e.g.,
neighbouring APs can exchange the list of connected devices
that act as caches and broadcast that list periodically for all).

Fig. 1. Media streaming with caching

Also note that the direct node-to-node control traffic is not
affecting directly the AP (for details also see sub-section V-A).
In our scenario each node is attached to one AP and additionally
it can communicate with several fellow nodes from its. We do
not analyze the technological details, but two possible
alternatives for such local communications to be largely
adopted in the coming years are the WiFi Direct [3] and LTE
Direct [4].

In our solution we use additional wireless sessions to receive
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions;
some of these collisions are hidden by lower layers, others will
result in packet losses. At higher layers (networking and above)
these packet losses are perceived as a lower bandwidth. We
measured the effect of this parallel communication, as
described in section 5.1 and we used the results in our
simulations. Thus during the evaluation of our model we take
into account the impact of the addition of cache-to-node
sessions through the modified data transfer rates.

IV. MODELING THE CACHE BASED STREAMING SERVICE

A. Network Coding Based Caching
From our model’s perspective the important thing is to have

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account
that a given node cannot communicate directly with every
neighbor, the degree of connectivity is upper bounded.
Currently the most used file distribution is BitTorrent, and the
most used p2p streaming application (SopCast) is based on the
same principles [21]. In BitTorrent only 5 slots are available for
uploading data. The goal of this limitation is to protect the
uploaders (i.e., the cache) from overload.

We consider that the potential coverage areas of the APs will
be much larger than the area they accept connection requests
from. Therefore, if there is a node somewhere at the border of
two (or more) neighbouring AP coverage areas, then it can be
identified by the respective APs. Based on that they can provide
this node with the necessary information about cached content
within its reach (but it will not “spam” this node with the list of
far distant caches). The request statistics for a given replay or
generally, for this type of service and similar statistics specific
to streaming services can be computed in the background

Network Coding Based Caching for
Near Real-Time Streaming Media

INFOCOMMUNICATIONS JOURNAL

MARCH 2015 • VOLUME VII • NUMBER 1 9

3

stadiums the participants are bound to their seats and typically
these events last for only a few hours. Therefore the people are
not moving as much as in the previous scenario.

Combination of the previous two scenarios are the open air
sporting events (bicycle tour, triathlon, etc). In such scenarios
the attendance is scattered along the track, but usually they form
small groups of people at interesting or spectacular portions of
the track. Due to the largest such cycling event, (Tour de
France), we will refer to this scenario as the “Tour” scenario.

Note that we expect different user behaviors and topologies
in each of these scenarios, as detailed later in sub-section V-C.

B. Streaming Media Services
The traffic volume of streaming media had exceeded that of

any other traffic type, including peer-to-peer or web access and
researchers tried to reduce its bandwidth demand by various
methods, including caching. There is a vast available literature
in this field. In [17] we highlighted the most important ones.
The reader interested in further details of streaming video
caching is directed to a thorough overview of this field [14].

Our proposal is an additional service to extend the original
streaming service. Currently replays are broadcasted within the
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering
replays close to the moment in time when it originally happened
(e.g., 100 minutes), which happens in a near real time fashion
(in the worst case). In lots of cases the users want to re-watch
the missed content, too. But in such cases only some special
moments are of high interest, as the user then wants to resume
and follow the original live content. Therefore recording the
whole stream and playing it with a constant lag is not an option.
In this case it is better to cache such short sequences from the
live stream and make it available for instant replay. This
caching service is detailed in the next sub-section.

C. Caching of the Replayed Content
In this section we introduce our solution for near real-time

media streaming that also offloads the wireless access.
The load in the wireless access is decreased by the use of

network coding and stretching the lifetime of the network
encoded packets somewhere in the network distributed in end
devices or well-placed points in the distribution/access domain.
The cache distribution is implemented primarily on the user's
devices.

This scenario is depicted in Fig. 1. The original live
streaming media is distributed by the APi Access Points. The
nodes receiving the data encode it and cache it locally (dark
gray stars –S1, …). Any time a node (light gray star) wants a
replay, they will have the data chunks readily available in their
local mesh network.

As already mentioned, the nodes should organize themselves
to find the caches, this can be done using techniques used by
peer-to-peer applications [13]. The advantage is that the
neighbor list maintenance can be supported by the APs with
limited extra costs in terms of bandwidth usage (e.g.,
neighbouring APs can exchange the list of connected devices
that act as caches and broadcast that list periodically for all).

Fig. 1. Media streaming with caching

Also note that the direct node-to-node control traffic is not
affecting directly the AP (for details also see sub-section V-A).
In our scenario each node is attached to one AP and additionally
it can communicate with several fellow nodes from its. We do
not analyze the technological details, but two possible
alternatives for such local communications to be largely
adopted in the coming years are the WiFi Direct [3] and LTE
Direct [4].

In our solution we use additional wireless sessions to receive
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions;
some of these collisions are hidden by lower layers, others will
result in packet losses. At higher layers (networking and above)
these packet losses are perceived as a lower bandwidth. We
measured the effect of this parallel communication, as
described in section 5.1 and we used the results in our
simulations. Thus during the evaluation of our model we take
into account the impact of the addition of cache-to-node
sessions through the modified data transfer rates.

IV. MODELING THE CACHE BASED STREAMING SERVICE

A. Network Coding Based Caching
From our model’s perspective the important thing is to have

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account
that a given node cannot communicate directly with every
neighbor, the degree of connectivity is upper bounded.
Currently the most used file distribution is BitTorrent, and the
most used p2p streaming application (SopCast) is based on the
same principles [21]. In BitTorrent only 5 slots are available for
uploading data. The goal of this limitation is to protect the
uploaders (i.e., the cache) from overload.

We consider that the potential coverage areas of the APs will
be much larger than the area they accept connection requests
from. Therefore, if there is a node somewhere at the border of
two (or more) neighbouring AP coverage areas, then it can be
identified by the respective APs. Based on that they can provide
this node with the necessary information about cached content
within its reach (but it will not “spam” this node with the list of
far distant caches). The request statistics for a given replay or
generally, for this type of service and similar statistics specific
to streaming services can be computed in the background

2

II. COMMUNICATION IN THE LOCAL WIRELESS DOMAIN
The support of new service types in such a challenging

environment as crowded spaces needs a complex approach,
which relies on results from several research areas of
communications. In this section we briefly introduce the main
aspects that influence the most our proposal and are referenced
in later Sections during the definition of the model of our
proposal. Specifically, the wireless technologies define the
limitations of direct inter-node communication, while network
coding ensures the flexibility and robustness of local data
distribution.

A. Offloading the Local Wireless Access
Smartphones have several wireless interfaces that can be

used to achieve direct communication. The natural choice is
WiFi, with its adhoc variant. WiFi adhoc was very popular
among researchers in the laptop era. Lots of mobile ad hoc
protocols (MANET) were prototyped and investigated using
such connections. Unfortunately this technology is not
supported anymore by the vendors, although some Android
smartphone models still can be tweaked to work in adhoc mode.
The main advantage of the ad hoc mode is that it is very flexible.

Officially the replacement technology of the WiFi ad hoc
mode is the WiFi Direct [3]. Nevertheless, the latter comes with
some limitations, but these do not affect our scenarios. Both
technologies have a different problem, too: the interfaces can
work only in one WiFi mode only. Nevertheless, for modelling
purposes we can use the WiFi Direct interface, as most of the
community is familiar with this technology. Note that in real
life deployments the local networking connection might be one
of the UMTS/LTE technologies (e.g., using femtocells). Then
the WiFi interface of the smartphone is available to support our
service.

A different option might be the new variants of Bluetooth.
The advantage is that typically this interface is not used, but it
has lower capacity and it is harder to set up a link.

Finally we have to mention the promising new LTE variant,
the LTE Direct [4] (or LTE D2D), which offers direct
connectivity in a non-WiFi band, but it will cost more, as
operates in a licensed band.

B. Network Coding
Network coding is a technique that, in contrast to channel

coding, “allows and encourages the mixing of data at
intermediate network nodes”, instead of just encoding messages
in a redundant way, allowing the network to have a maximum
flow of information achieving a larger throughput [5]. With
network coding, information transmitted from a source can be
received by the receivers, but it can also be inferred or decoded.
Intermediate nodes are still able to forward information but if it
is the case, the node can combine different received streams of
information into just one and transmit it to its outgoing nodes.

The fixed version of network coding uses simpler coding
techniques (e.g., bitwise XOR-ing the packets of the involved
stream(s)), making the flow always encodable and decodable,
however this advantage comes with the downside of having to
define the structure and the number of participants of the entire

network previously. There is an alternative that follows a
random behavior [6], where nodes assign coefficients to each
packet randomly and according to the finite field used, there is
a probability of these coefficients being decodable. Using
random network coding all nodes are independent and
randomized, without the need of any knowledge of the rest of
the network. Intermediate nodes build a linear combination of
incoming messages that then transmit on each on their outgoing
links. Differently than the fixed method (e.g., bitwise XOR-
ing), this combination uses independently and randomly chosen
coefficients over a finite field. By allowing this kind of local
encoding under a sufficiently large Galois field (i.e. finite field),
the received coded blocks are decodable with a very high
probability at the sink peers, on the order of the inverse of the
size of the finite field [7].

The first practical wireless network coding scheme designed
to deal with inter-flow traffic is also based on Random Linear
Network Coding (RLNC) [8]. It exploits the shared nature of
wireless medium and combines available data chunks with ones
overheard from neighbors to restore the original information.
Although it significantly improves network throughput, it is
limited to situations where multiple streams cross the same
network segment. A different approach uses RLNC to encode
data within the same flow [9]. This intra-flow network coding
improves the performance of the network over wireless links.

We divide the stream in generations. Only packets from a
generation are linearly combined (encoded), thus at the
receiving end enough linearly independent packets from a
generation should be collected to be able to decode the content.
For the streaming service it acts as a time window, because all
packets must arrive before the playout of that particular
encoded sequence can start. Any encoded packet belonging to
a generation is useful (until we receive enough of them), the
packets are not ordered, which simplifies the timing at the
receiver side.

Network Coding was mostly proposed to be used in
information distribution [10], multicast [11] and data averaging
[12], which assures the usage in distributed sensor network data
collection as well.

III. CACHING OF STREAMING MEDIA AT THE END NODES

A. Crowded Event Scenarios
We have identified three different scenarios for crowded

events. All three scenarios offer a solid business model to build
on and attract dedicated users who have the motivation to be
actively involved in the content consumption process. E.g., they
are interested in the details of the performers, want to know
previous stories about the protagonists, etc. This offers a good
audience for our proposed service.

The first scenario is the open air city festival, where attendees
have access to multiple scenes and several selling and catering
locations within a geographically limited area. Note that such
events might become very congested, especially around sites of
interest. We will refer to this scenario as the “festival” one.

A similarly crowded scenario is offered by the stadiums
(“stadium” scenario). The main difference is that in the

3

stadiums the participants are bound to their seats and typically
these events last for only a few hours. Therefore the people are
not moving as much as in the previous scenario.

Combination of the previous two scenarios are the open air
sporting events (bicycle tour, triathlon, etc). In such scenarios
the attendance is scattered along the track, but usually they form
small groups of people at interesting or spectacular portions of
the track. Due to the largest such cycling event, (Tour de
France), we will refer to this scenario as the “Tour” scenario.

Note that we expect different user behaviors and topologies
in each of these scenarios, as detailed later in sub-section V-C.

B. Streaming Media Services
The traffic volume of streaming media had exceeded that of

any other traffic type, including peer-to-peer or web access and
researchers tried to reduce its bandwidth demand by various
methods, including caching. There is a vast available literature
in this field. In [17] we highlighted the most important ones.
The reader interested in further details of streaming video
caching is directed to a thorough overview of this field [14].

Our proposal is an additional service to extend the original
streaming service. Currently replays are broadcasted within the
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering
replays close to the moment in time when it originally happened
(e.g., 100 minutes), which happens in a near real time fashion
(in the worst case). In lots of cases the users want to re-watch
the missed content, too. But in such cases only some special
moments are of high interest, as the user then wants to resume
and follow the original live content. Therefore recording the
whole stream and playing it with a constant lag is not an option.
In this case it is better to cache such short sequences from the
live stream and make it available for instant replay. This
caching service is detailed in the next sub-section.

C. Caching of the Replayed Content
In this section we introduce our solution for near real-time

media streaming that also offloads the wireless access.
The load in the wireless access is decreased by the use of

network coding and stretching the lifetime of the network
encoded packets somewhere in the network distributed in end
devices or well-placed points in the distribution/access domain.
The cache distribution is implemented primarily on the user's
devices.

This scenario is depicted in Fig. 1. The original live
streaming media is distributed by the APi Access Points. The
nodes receiving the data encode it and cache it locally (dark
gray stars –S1, …). Any time a node (light gray star) wants a
replay, they will have the data chunks readily available in their
local mesh network.

As already mentioned, the nodes should organize themselves
to find the caches, this can be done using techniques used by
peer-to-peer applications [13]. The advantage is that the
neighbor list maintenance can be supported by the APs with
limited extra costs in terms of bandwidth usage (e.g.,
neighbouring APs can exchange the list of connected devices
that act as caches and broadcast that list periodically for all).

Fig. 1. Media streaming with caching

Also note that the direct node-to-node control traffic is not
affecting directly the AP (for details also see sub-section V-A).
In our scenario each node is attached to one AP and additionally
it can communicate with several fellow nodes from its. We do
not analyze the technological details, but two possible
alternatives for such local communications to be largely
adopted in the coming years are the WiFi Direct [3] and LTE
Direct [4].

In our solution we use additional wireless sessions to receive
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions;
some of these collisions are hidden by lower layers, others will
result in packet losses. At higher layers (networking and above)
these packet losses are perceived as a lower bandwidth. We
measured the effect of this parallel communication, as
described in section 5.1 and we used the results in our
simulations. Thus during the evaluation of our model we take
into account the impact of the addition of cache-to-node
sessions through the modified data transfer rates.

IV. MODELING THE CACHE BASED STREAMING SERVICE

A. Network Coding Based Caching
From our model’s perspective the important thing is to have

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account
that a given node cannot communicate directly with every
neighbor, the degree of connectivity is upper bounded.
Currently the most used file distribution is BitTorrent, and the
most used p2p streaming application (SopCast) is based on the
same principles [21]. In BitTorrent only 5 slots are available for
uploading data. The goal of this limitation is to protect the
uploaders (i.e., the cache) from overload.

We consider that the potential coverage areas of the APs will
be much larger than the area they accept connection requests
from. Therefore, if there is a node somewhere at the border of
two (or more) neighbouring AP coverage areas, then it can be
identified by the respective APs. Based on that they can provide
this node with the necessary information about cached content
within its reach (but it will not “spam” this node with the list of
far distant caches). The request statistics for a given replay or
generally, for this type of service and similar statistics specific
to streaming services can be computed in the background

3

stadiums the participants are bound to their seats and typically
these events last for only a few hours. Therefore the people are
not moving as much as in the previous scenario.

Combination of the previous two scenarios are the open air
sporting events (bicycle tour, triathlon, etc). In such scenarios
the attendance is scattered along the track, but usually they form
small groups of people at interesting or spectacular portions of
the track. Due to the largest such cycling event, (Tour de
France), we will refer to this scenario as the “Tour” scenario.

Note that we expect different user behaviors and topologies
in each of these scenarios, as detailed later in sub-section V-C.

B. Streaming Media Services
The traffic volume of streaming media had exceeded that of

any other traffic type, including peer-to-peer or web access and
researchers tried to reduce its bandwidth demand by various
methods, including caching. There is a vast available literature
in this field. In [17] we highlighted the most important ones.
The reader interested in further details of streaming video
caching is directed to a thorough overview of this field [14].

Our proposal is an additional service to extend the original
streaming service. Currently replays are broadcasted within the
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering
replays close to the moment in time when it originally happened
(e.g., 100 minutes), which happens in a near real time fashion
(in the worst case). In lots of cases the users want to re-watch
the missed content, too. But in such cases only some special
moments are of high interest, as the user then wants to resume
and follow the original live content. Therefore recording the
whole stream and playing it with a constant lag is not an option.
In this case it is better to cache such short sequences from the
live stream and make it available for instant replay. This
caching service is detailed in the next sub-section.

C. Caching of the Replayed Content
In this section we introduce our solution for near real-time

media streaming that also offloads the wireless access.
The load in the wireless access is decreased by the use of

network coding and stretching the lifetime of the network
encoded packets somewhere in the network distributed in end
devices or well-placed points in the distribution/access domain.
The cache distribution is implemented primarily on the user's
devices.

This scenario is depicted in Fig. 1. The original live
streaming media is distributed by the APi Access Points. The
nodes receiving the data encode it and cache it locally (dark
gray stars –S1, …). Any time a node (light gray star) wants a
replay, they will have the data chunks readily available in their
local mesh network.

As already mentioned, the nodes should organize themselves
to find the caches, this can be done using techniques used by
peer-to-peer applications [13]. The advantage is that the
neighbor list maintenance can be supported by the APs with
limited extra costs in terms of bandwidth usage (e.g.,
neighbouring APs can exchange the list of connected devices
that act as caches and broadcast that list periodically for all).

Fig. 1. Media streaming with caching

Also note that the direct node-to-node control traffic is not
affecting directly the AP (for details also see sub-section V-A).
In our scenario each node is attached to one AP and additionally
it can communicate with several fellow nodes from its. We do
not analyze the technological details, but two possible
alternatives for such local communications to be largely
adopted in the coming years are the WiFi Direct [3] and LTE
Direct [4].

In our solution we use additional wireless sessions to receive
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions;
some of these collisions are hidden by lower layers, others will
result in packet losses. At higher layers (networking and above)
these packet losses are perceived as a lower bandwidth. We
measured the effect of this parallel communication, as
described in section 5.1 and we used the results in our
simulations. Thus during the evaluation of our model we take
into account the impact of the addition of cache-to-node
sessions through the modified data transfer rates.

IV. MODELING THE CACHE BASED STREAMING SERVICE

A. Network Coding Based Caching
From our model’s perspective the important thing is to have

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account
that a given node cannot communicate directly with every
neighbor, the degree of connectivity is upper bounded.
Currently the most used file distribution is BitTorrent, and the
most used p2p streaming application (SopCast) is based on the
same principles [21]. In BitTorrent only 5 slots are available for
uploading data. The goal of this limitation is to protect the
uploaders (i.e., the cache) from overload.

We consider that the potential coverage areas of the APs will
be much larger than the area they accept connection requests
from. Therefore, if there is a node somewhere at the border of
two (or more) neighbouring AP coverage areas, then it can be
identified by the respective APs. Based on that they can provide
this node with the necessary information about cached content
within its reach (but it will not “spam” this node with the list of
far distant caches). The request statistics for a given replay or
generally, for this type of service and similar statistics specific
to streaming services can be computed in the background

3

stadiums the participants are bound to their seats and typically
these events last for only a few hours. Therefore the people are
not moving as much as in the previous scenario.

Combination of the previous two scenarios are the open air
sporting events (bicycle tour, triathlon, etc). In such scenarios
the attendance is scattered along the track, but usually they form
small groups of people at interesting or spectacular portions of
the track. Due to the largest such cycling event, (Tour de
France), we will refer to this scenario as the “Tour” scenario.

Note that we expect different user behaviors and topologies
in each of these scenarios, as detailed later in sub-section V-C.

B. Streaming Media Services
The traffic volume of streaming media had exceeded that of

any other traffic type, including peer-to-peer or web access and
researchers tried to reduce its bandwidth demand by various
methods, including caching. There is a vast available literature
in this field. In [17] we highlighted the most important ones.
The reader interested in further details of streaming video
caching is directed to a thorough overview of this field [14].

Our proposal is an additional service to extend the original
streaming service. Currently replays are broadcasted within the
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering
replays close to the moment in time when it originally happened
(e.g., 100 minutes), which happens in a near real time fashion
(in the worst case). In lots of cases the users want to re-watch
the missed content, too. But in such cases only some special
moments are of high interest, as the user then wants to resume
and follow the original live content. Therefore recording the
whole stream and playing it with a constant lag is not an option.
In this case it is better to cache such short sequences from the
live stream and make it available for instant replay. This
caching service is detailed in the next sub-section.

C. Caching of the Replayed Content
In this section we introduce our solution for near real-time

media streaming that also offloads the wireless access.
The load in the wireless access is decreased by the use of

network coding and stretching the lifetime of the network
encoded packets somewhere in the network distributed in end
devices or well-placed points in the distribution/access domain.
The cache distribution is implemented primarily on the user's
devices.

This scenario is depicted in Fig. 1. The original live
streaming media is distributed by the APi Access Points. The
nodes receiving the data encode it and cache it locally (dark
gray stars –S1, …). Any time a node (light gray star) wants a
replay, they will have the data chunks readily available in their
local mesh network.

As already mentioned, the nodes should organize themselves
to find the caches, this can be done using techniques used by
peer-to-peer applications [13]. The advantage is that the
neighbor list maintenance can be supported by the APs with
limited extra costs in terms of bandwidth usage (e.g.,
neighbouring APs can exchange the list of connected devices
that act as caches and broadcast that list periodically for all).

Fig. 1. Media streaming with caching

Also note that the direct node-to-node control traffic is not
affecting directly the AP (for details also see sub-section V-A).
In our scenario each node is attached to one AP and additionally
it can communicate with several fellow nodes from its. We do
not analyze the technological details, but two possible
alternatives for such local communications to be largely
adopted in the coming years are the WiFi Direct [3] and LTE
Direct [4].

In our solution we use additional wireless sessions to receive
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions;
some of these collisions are hidden by lower layers, others will
result in packet losses. At higher layers (networking and above)
these packet losses are perceived as a lower bandwidth. We
measured the effect of this parallel communication, as
described in section 5.1 and we used the results in our
simulations. Thus during the evaluation of our model we take
into account the impact of the addition of cache-to-node
sessions through the modified data transfer rates.

IV. MODELING THE CACHE BASED STREAMING SERVICE

A. Network Coding Based Caching
From our model’s perspective the important thing is to have

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account
that a given node cannot communicate directly with every
neighbor, the degree of connectivity is upper bounded.
Currently the most used file distribution is BitTorrent, and the
most used p2p streaming application (SopCast) is based on the
same principles [21]. In BitTorrent only 5 slots are available for
uploading data. The goal of this limitation is to protect the
uploaders (i.e., the cache) from overload.

We consider that the potential coverage areas of the APs will
be much larger than the area they accept connection requests
from. Therefore, if there is a node somewhere at the border of
two (or more) neighbouring AP coverage areas, then it can be
identified by the respective APs. Based on that they can provide
this node with the necessary information about cached content
within its reach (but it will not “spam” this node with the list of
far distant caches). The request statistics for a given replay or
generally, for this type of service and similar statistics specific
to streaming services can be computed in the background

Network Coding Based Caching for
Near Real-Time Streaming Media

MARCH 2015 • VOLUME VII • NUMBER 110

INFOCOMMUNICATIONS JOURNAL

5

 1,0ijx ∀𝑖𝑖, ∀𝑗𝑗 (16)

iji hk , ∀𝑖𝑖, ∀𝑗𝑗 (17)

We have (10), (11), (12) and (13), since conditions (1), (2),
(5) and (8) are valid in this scenario, too. Eq. (13) shows the
actually downloaded number of chunks for one node, vj should
at least be equal with gw. If we select M sufficiently large (e.g.,

wgM), then eq. (14) states that downloads are possible
only from selected caches. Eq. (15) says that the number of
downloaded packets from a given cache is upper bounded by
the content available at that cache.

V. EVALUATION OF THE MODEL

In this section we evaluate the proposed model and discuss
the particularities of the proposed scenarios.

A. Offloading the Wireless Access
We evaluated the effect of the additional service on the

original AP capacity. In this experiment we considered that the
AP is using WiFi, while the nodes for their direct
communication (i.e., cache access) use such technologies that
uses the same frequency band (e.g., WiFi Direct or Bluetooth).
We measured the impact of WiFi Direct on WiFi, when 5 to 20
streaming devices are connected to the AP and we had pairs of
nodes testing WiFi Direct connections with iPerf. We found
that if the two technologies run on different channels, the total
capacity is relatively less affected when larger number of direct
node-to-node pairs communicate. We used this value in our
simulator to represent the effect of direct node-to-node
communication on overall network load (e.g., packet losses due
to collisions). Note that the combination of LTE Direct with
WiFi APs yields better results in the favor of the distributed
caching solutions. The co-existence of LTE-based streaming
and LTE Direct was not assessed in this paper, as we focus on
local wireless technologies. In this sub-section we compare
three scenarios. The original one is when the replays are sent by
the AP, which increases the load linearly with the number of
requests.

The alternative solution is when caching is implemented
without network coding. In this case the packets are sent
directly from node to node, without directly consuming AP
bandwidth. In this case there is a large control traffic overhead
required to organize the download of the content. This case
resembles the pure peer-to-peer streaming solutions, where
control overhead in terms of number of packets is reported to
vary between 5% and 20%, with the larger values for the
leading streaming peer-to-peer application, SopCast [21][22].
The size of the control packets is one order of magnitude lower
than the size of data packets, but p2p streaming applications
contact many other peers, not only those they are downloading
from. Note that based on our measurements, this 20% packet
overhead is a conservative value, because at the beginning of
downloads (starting to watch a replay) or when a seeder has to
be replaced (churn event), the control traffic exceeds 2/3 of the
total packet counts. As a consequence, we used a 15% overhead

in terms of bandwidth (on the direct node to node links). In [21]
they calculated with minimum 10% signalling overhead,
SopCast having larger overheads.

The third case is the proposed network coding based caching.
For RLNC based distribution in [23] the authors calculated with
5% overhead, but our scenario is simpler, because the
infrastructure takes over some parts of the discovery and
maintenance job and the peers are within direct layer 2 contact.
Therefore we calculated with a minimal overhead (we used a
3% value in our simulations), as the requester also does not have
to deal with the uniqueness of the segments.

The result of the evaluation is shown in Fig. 2, with linear
trends fitted on all three data series. We simulated 50 requesting
nodes the most, because a WiFi AP will not serve more than
100 streams, and out of this maximum number of connected
nodes only a fraction of them will access the cache at the same
time. It can be seen that both distributed caching solutions
significantly offload the network, and scales well with the
growing replay demands. Also we can see that the proposed
network coding based caching solution outperforms both
alternatives.

B. Optimization of the Caches
We have built a simulator to test the scenarios given in

section IV in the different network conditions. We applied the
graph libraries of the lemon tool [26] and the glpk and gurobi
public ILP solver tools [27][28]. We generated the connectivity
matrix considering that the network nodes were uniformly
distributed. We have generated several different networks and
averaged the solutions to get the presented results. We limited
the upload capacity to 5 units.

The size of the encoded chunks should be less than the size
of an UDP packet, somewhere around 1kB. The number of data

chunks encoding the same generation (gw) should be of orders
of tens, eventually few hundreds.

These results give the theoretical bounds as a result.
However, in practically feasible implementations, due to the
distributed implementation, we can just approximate this result
at the best. We have proposed heuristic algorithms for both
optimization problems in [17], but in this paper we will analyse
the ILP models only.

Because of the complexity of the problem, in order to allow
the ILP solver to find the optimum, we used max. 100 nodes (N)

Fig. 2. Evaluation of AP offloading efficiency

4

[15][16]. Note that caching nodes can also report the read
statistics to their APs. The details of the practical
implementation of such services (e.g., the description of a
protocol implementing it) are out of the scope of this paper. In
our model we consider that these data are available, and it can
be obtained from the AP a given node is connected to.

In our model the nodes that actually execute the network
coding task are the same ones that work as caches. Due to the
nature of RLNC we do not have to previously configure them.
Therefore in our model we do not have to dedicate special
attention to network coding aspects, nor to the selection process
of the coding nodes. During the construction of our model we
just had to focus on the caching aspects, the selection of the
network coding nodes implicitly resulted from it.

Time dependencies are also not addressed directly, because
the focus is on collecting the packets of a generation. Once
collected enough packets, the content is readily available,
implicitly meaning that the timing of content distribution
conforms to the requirement of the service. If this requires
slightly more time, then it can be considered as a slightly longer
buffering time, which will not affect the (near real-time)
service, because it has less strict delay requirements then a real-
time one.

In the simplest model we search for the number of caching
nodes to serve those nodes that are attached to the same AP, but
we do not limit the cache size. Note that this solution does not
allow that a node attached to APi to request data from a caching
node attached to APj. In order to deduce the minimum number
of overall caching points in the network, we can formulate an
Integer Linear Program (ILP), as presented in the following
sub-section. Then, in section IV-C we refine our model, aiming
to minimize the size of the cache, at the same time letting more
nodes to step in as caches, and we formulate an ILP for this
case, too.

B. Minimizing the Number of Caching Nodes
We have a set of {APi} Access Points, but for our model we

should rather focus on the nodes. The nodes {v1, …, vN} and the
direct links between them { eij } can be considered the vertices
and the edges of a graph G. We define the connectivity matrix
{aij}, where a matrix element is 1 if there is a direct connection
between nodes i and j, 0 otherwise. Note that this can be
obtained by recoding the original content locally with pseudo
random coefficients.

Our goal is to determine the minimal number of caching
nodes, a subset of G. ci is the total capacity of the direct link
from node i (we consider that the total incoming and outgoing
capacities are equal). In order to decode the original content, we
need at least a full generation of encoded packets (the size of a
generation is noted with gw). We introduce two binary variables;
xij denotes a direct link between nodes vi and vj, xij = 1 if vi sends
the cached content to vj, xij = 0 otherwise. Similarly, ui = 1, if
node i is a cache, ui = 0 otherwise.

Our optimization problem is:
minimize ∑ ui (1)

subject to

 i
j

ij cx ∀𝑖𝑖 (2)

 j
i

ij cx ∀𝑗𝑗 (3)

 w
i

ij gx ∀𝑖𝑖, ∀𝑗𝑗 (4)

 ijij ax ∀𝑖𝑖 ∀𝑗𝑗 (5)

 iij ux ∀𝑗𝑗 (6)

 1,0, iji xu ∀𝑖𝑖, ∀𝑗𝑗 (7)-(8)

Equations (2) and (3) ensure that the caches and the regular

nodes cannot exceed their total link capacities. Equation (4)
ensures that all demand is served. Equation (5) assures that xij
can be greater than 0 only if there is a direct physical connection
between the nodes and eq. (6) that xij is greater than 0 only if
the connection is originating from a cache.

The generic form of this kind of optimization problem is
known as the geometric set cover problem, and has been
continuously researched in the last decades. Based on the earlier
research results it is hard to solve [18][19], and the most
versions of the problem are still considered to be NP-hard [20].
Also, [25] states that 0-1 Integer Linear Programming (ILP) is
NP-complete.

C. Minimizing the Cache Size
In the previous two sub-sections we analyzed the ways to

minimize the number of caching nodes, but we did not restrict
the size of the cache. In this subsection we try to minimize the
size of the cache, but we do not restrict the number of caching
nodes. Note that every node is a potential cache node, because
every node plays the streaming content (we exclude those nodes
that do not follow the video stream). Let us keep the same
notations we introduced earlier in this section. We note the
number of chunks stored at node i with ki, and the number of
actually downloaded encoded chunks from i to j with hij .

 Now the objective is to
minimize ∑ ki (9)

subject to

 i
j

ij cx ∀𝑖𝑖 (10)

 j
i

ij cx ∀𝑗𝑗 (11)

 ijij ax ∀𝑖𝑖 ∀𝑗𝑗 (12)

 w
i

ij gh ∀𝑗𝑗 (13)

 0 =< hij <= xij M ∀𝑖𝑖, ∀𝑗𝑗 (14)

 ki >= hij >= 0 ∀𝑖𝑖, ∀𝑗𝑗 (15)

4

[15][16]. Note that caching nodes can also report the read
statistics to their APs. The details of the practical
implementation of such services (e.g., the description of a
protocol implementing it) are out of the scope of this paper. In
our model we consider that these data are available, and it can
be obtained from the AP a given node is connected to.

In our model the nodes that actually execute the network
coding task are the same ones that work as caches. Due to the
nature of RLNC we do not have to previously configure them.
Therefore in our model we do not have to dedicate special
attention to network coding aspects, nor to the selection process
of the coding nodes. During the construction of our model we
just had to focus on the caching aspects, the selection of the
network coding nodes implicitly resulted from it.

Time dependencies are also not addressed directly, because
the focus is on collecting the packets of a generation. Once
collected enough packets, the content is readily available,
implicitly meaning that the timing of content distribution
conforms to the requirement of the service. If this requires
slightly more time, then it can be considered as a slightly longer
buffering time, which will not affect the (near real-time)
service, because it has less strict delay requirements then a real-
time one.

In the simplest model we search for the number of caching
nodes to serve those nodes that are attached to the same AP, but
we do not limit the cache size. Note that this solution does not
allow that a node attached to APi to request data from a caching
node attached to APj. In order to deduce the minimum number
of overall caching points in the network, we can formulate an
Integer Linear Program (ILP), as presented in the following
sub-section. Then, in section IV-C we refine our model, aiming
to minimize the size of the cache, at the same time letting more
nodes to step in as caches, and we formulate an ILP for this
case, too.

B. Minimizing the Number of Caching Nodes
We have a set of {APi} Access Points, but for our model we

should rather focus on the nodes. The nodes {v1, …, vN} and the
direct links between them { eij } can be considered the vertices
and the edges of a graph G. We define the connectivity matrix
{aij}, where a matrix element is 1 if there is a direct connection
between nodes i and j, 0 otherwise. Note that this can be
obtained by recoding the original content locally with pseudo
random coefficients.

Our goal is to determine the minimal number of caching
nodes, a subset of G. ci is the total capacity of the direct link
from node i (we consider that the total incoming and outgoing
capacities are equal). In order to decode the original content, we
need at least a full generation of encoded packets (the size of a
generation is noted with gw). We introduce two binary variables;
xij denotes a direct link between nodes vi and vj, xij = 1 if vi sends
the cached content to vj, xij = 0 otherwise. Similarly, ui = 1, if
node i is a cache, ui = 0 otherwise.

Our optimization problem is:
minimize ∑ ui (1)

subject to

 i
j

ij cx ∀𝑖𝑖 (2)

 j
i

ij cx ∀𝑗𝑗 (3)

 w
i

ij gx ∀𝑖𝑖, ∀𝑗𝑗 (4)

 ijij ax ∀𝑖𝑖 ∀𝑗𝑗 (5)

 iij ux ∀𝑗𝑗 (6)

 1,0, iji xu ∀𝑖𝑖, ∀𝑗𝑗 (7)-(8)

Equations (2) and (3) ensure that the caches and the regular

nodes cannot exceed their total link capacities. Equation (4)
ensures that all demand is served. Equation (5) assures that xij
can be greater than 0 only if there is a direct physical connection
between the nodes and eq. (6) that xij is greater than 0 only if
the connection is originating from a cache.

The generic form of this kind of optimization problem is
known as the geometric set cover problem, and has been
continuously researched in the last decades. Based on the earlier
research results it is hard to solve [18][19], and the most
versions of the problem are still considered to be NP-hard [20].
Also, [25] states that 0-1 Integer Linear Programming (ILP) is
NP-complete.

C. Minimizing the Cache Size
In the previous two sub-sections we analyzed the ways to

minimize the number of caching nodes, but we did not restrict
the size of the cache. In this subsection we try to minimize the
size of the cache, but we do not restrict the number of caching
nodes. Note that every node is a potential cache node, because
every node plays the streaming content (we exclude those nodes
that do not follow the video stream). Let us keep the same
notations we introduced earlier in this section. We note the
number of chunks stored at node i with ki, and the number of
actually downloaded encoded chunks from i to j with hij .

 Now the objective is to
minimize ∑ ki (9)

subject to

 i
j

ij cx ∀𝑖𝑖 (10)

 j
i

ij cx ∀𝑗𝑗 (11)

 ijij ax ∀𝑖𝑖 ∀𝑗𝑗 (12)

 w
i

ij gh ∀𝑗𝑗 (13)

 0 =< hij <= xij M ∀𝑖𝑖, ∀𝑗𝑗 (14)

 ki >= hij >= 0 ∀𝑖𝑖, ∀𝑗𝑗 (15)

Network Coding Based Caching for
Near Real-Time Streaming Media

INFOCOMMUNICATIONS JOURNAL

MARCH 2015 • VOLUME VII • NUMBER 1 11

5

 1,0ijx ∀𝑖𝑖, ∀𝑗𝑗 (16)

iji hk , ∀𝑖𝑖, ∀𝑗𝑗 (17)

We have (10), (11), (12) and (13), since conditions (1), (2),
(5) and (8) are valid in this scenario, too. Eq. (13) shows the
actually downloaded number of chunks for one node, vj should
at least be equal with gw. If we select M sufficiently large (e.g.,

wgM), then eq. (14) states that downloads are possible
only from selected caches. Eq. (15) says that the number of
downloaded packets from a given cache is upper bounded by
the content available at that cache.

V. EVALUATION OF THE MODEL

In this section we evaluate the proposed model and discuss
the particularities of the proposed scenarios.

A. Offloading the Wireless Access
We evaluated the effect of the additional service on the

original AP capacity. In this experiment we considered that the
AP is using WiFi, while the nodes for their direct
communication (i.e., cache access) use such technologies that
uses the same frequency band (e.g., WiFi Direct or Bluetooth).
We measured the impact of WiFi Direct on WiFi, when 5 to 20
streaming devices are connected to the AP and we had pairs of
nodes testing WiFi Direct connections with iPerf. We found
that if the two technologies run on different channels, the total
capacity is relatively less affected when larger number of direct
node-to-node pairs communicate. We used this value in our
simulator to represent the effect of direct node-to-node
communication on overall network load (e.g., packet losses due
to collisions). Note that the combination of LTE Direct with
WiFi APs yields better results in the favor of the distributed
caching solutions. The co-existence of LTE-based streaming
and LTE Direct was not assessed in this paper, as we focus on
local wireless technologies. In this sub-section we compare
three scenarios. The original one is when the replays are sent by
the AP, which increases the load linearly with the number of
requests.

The alternative solution is when caching is implemented
without network coding. In this case the packets are sent
directly from node to node, without directly consuming AP
bandwidth. In this case there is a large control traffic overhead
required to organize the download of the content. This case
resembles the pure peer-to-peer streaming solutions, where
control overhead in terms of number of packets is reported to
vary between 5% and 20%, with the larger values for the
leading streaming peer-to-peer application, SopCast [21][22].
The size of the control packets is one order of magnitude lower
than the size of data packets, but p2p streaming applications
contact many other peers, not only those they are downloading
from. Note that based on our measurements, this 20% packet
overhead is a conservative value, because at the beginning of
downloads (starting to watch a replay) or when a seeder has to
be replaced (churn event), the control traffic exceeds 2/3 of the
total packet counts. As a consequence, we used a 15% overhead

in terms of bandwidth (on the direct node to node links). In [21]
they calculated with minimum 10% signalling overhead,
SopCast having larger overheads.

The third case is the proposed network coding based caching.
For RLNC based distribution in [23] the authors calculated with
5% overhead, but our scenario is simpler, because the
infrastructure takes over some parts of the discovery and
maintenance job and the peers are within direct layer 2 contact.
Therefore we calculated with a minimal overhead (we used a
3% value in our simulations), as the requester also does not have
to deal with the uniqueness of the segments.

The result of the evaluation is shown in Fig. 2, with linear
trends fitted on all three data series. We simulated 50 requesting
nodes the most, because a WiFi AP will not serve more than
100 streams, and out of this maximum number of connected
nodes only a fraction of them will access the cache at the same
time. It can be seen that both distributed caching solutions
significantly offload the network, and scales well with the
growing replay demands. Also we can see that the proposed
network coding based caching solution outperforms both
alternatives.

B. Optimization of the Caches
We have built a simulator to test the scenarios given in

section IV in the different network conditions. We applied the
graph libraries of the lemon tool [26] and the glpk and gurobi
public ILP solver tools [27][28]. We generated the connectivity
matrix considering that the network nodes were uniformly
distributed. We have generated several different networks and
averaged the solutions to get the presented results. We limited
the upload capacity to 5 units.

The size of the encoded chunks should be less than the size
of an UDP packet, somewhere around 1kB. The number of data

chunks encoding the same generation (gw) should be of orders
of tens, eventually few hundreds.

These results give the theoretical bounds as a result.
However, in practically feasible implementations, due to the
distributed implementation, we can just approximate this result
at the best. We have proposed heuristic algorithms for both
optimization problems in [17], but in this paper we will analyse
the ILP models only.

Because of the complexity of the problem, in order to allow
the ILP solver to find the optimum, we used max. 100 nodes (N)

Fig. 2. Evaluation of AP offloading efficiency

4

[15][16]. Note that caching nodes can also report the read
statistics to their APs. The details of the practical
implementation of such services (e.g., the description of a
protocol implementing it) are out of the scope of this paper. In
our model we consider that these data are available, and it can
be obtained from the AP a given node is connected to.

In our model the nodes that actually execute the network
coding task are the same ones that work as caches. Due to the
nature of RLNC we do not have to previously configure them.
Therefore in our model we do not have to dedicate special
attention to network coding aspects, nor to the selection process
of the coding nodes. During the construction of our model we
just had to focus on the caching aspects, the selection of the
network coding nodes implicitly resulted from it.

Time dependencies are also not addressed directly, because
the focus is on collecting the packets of a generation. Once
collected enough packets, the content is readily available,
implicitly meaning that the timing of content distribution
conforms to the requirement of the service. If this requires
slightly more time, then it can be considered as a slightly longer
buffering time, which will not affect the (near real-time)
service, because it has less strict delay requirements then a real-
time one.

In the simplest model we search for the number of caching
nodes to serve those nodes that are attached to the same AP, but
we do not limit the cache size. Note that this solution does not
allow that a node attached to APi to request data from a caching
node attached to APj. In order to deduce the minimum number
of overall caching points in the network, we can formulate an
Integer Linear Program (ILP), as presented in the following
sub-section. Then, in section IV-C we refine our model, aiming
to minimize the size of the cache, at the same time letting more
nodes to step in as caches, and we formulate an ILP for this
case, too.

B. Minimizing the Number of Caching Nodes
We have a set of {APi} Access Points, but for our model we

should rather focus on the nodes. The nodes {v1, …, vN} and the
direct links between them { eij } can be considered the vertices
and the edges of a graph G. We define the connectivity matrix
{aij}, where a matrix element is 1 if there is a direct connection
between nodes i and j, 0 otherwise. Note that this can be
obtained by recoding the original content locally with pseudo
random coefficients.

Our goal is to determine the minimal number of caching
nodes, a subset of G. ci is the total capacity of the direct link
from node i (we consider that the total incoming and outgoing
capacities are equal). In order to decode the original content, we
need at least a full generation of encoded packets (the size of a
generation is noted with gw). We introduce two binary variables;
xij denotes a direct link between nodes vi and vj, xij = 1 if vi sends
the cached content to vj, xij = 0 otherwise. Similarly, ui = 1, if
node i is a cache, ui = 0 otherwise.

Our optimization problem is:
minimize ∑ ui (1)

subject to

 i
j

ij cx ∀𝑖𝑖 (2)

 j
i

ij cx ∀𝑗𝑗 (3)

 w
i

ij gx ∀𝑖𝑖, ∀𝑗𝑗 (4)

 ijij ax ∀𝑖𝑖 ∀𝑗𝑗 (5)

 iij ux ∀𝑗𝑗 (6)

 1,0, iji xu ∀𝑖𝑖, ∀𝑗𝑗 (7)-(8)

Equations (2) and (3) ensure that the caches and the regular

nodes cannot exceed their total link capacities. Equation (4)
ensures that all demand is served. Equation (5) assures that xij
can be greater than 0 only if there is a direct physical connection
between the nodes and eq. (6) that xij is greater than 0 only if
the connection is originating from a cache.

The generic form of this kind of optimization problem is
known as the geometric set cover problem, and has been
continuously researched in the last decades. Based on the earlier
research results it is hard to solve [18][19], and the most
versions of the problem are still considered to be NP-hard [20].
Also, [25] states that 0-1 Integer Linear Programming (ILP) is
NP-complete.

C. Minimizing the Cache Size
In the previous two sub-sections we analyzed the ways to

minimize the number of caching nodes, but we did not restrict
the size of the cache. In this subsection we try to minimize the
size of the cache, but we do not restrict the number of caching
nodes. Note that every node is a potential cache node, because
every node plays the streaming content (we exclude those nodes
that do not follow the video stream). Let us keep the same
notations we introduced earlier in this section. We note the
number of chunks stored at node i with ki, and the number of
actually downloaded encoded chunks from i to j with hij .

 Now the objective is to
minimize ∑ ki (9)

subject to

 i
j

ij cx ∀𝑖𝑖 (10)

 j
i

ij cx ∀𝑗𝑗 (11)

 ijij ax ∀𝑖𝑖 ∀𝑗𝑗 (12)

 w
i

ij gh ∀𝑗𝑗 (13)

 0 =< hij <= xij M ∀𝑖𝑖, ∀𝑗𝑗 (14)

 ki >= hij >= 0 ∀𝑖𝑖, ∀𝑗𝑗 (15)

4

[15][16]. Note that caching nodes can also report the read
statistics to their APs. The details of the practical
implementation of such services (e.g., the description of a
protocol implementing it) are out of the scope of this paper. In
our model we consider that these data are available, and it can
be obtained from the AP a given node is connected to.

In our model the nodes that actually execute the network
coding task are the same ones that work as caches. Due to the
nature of RLNC we do not have to previously configure them.
Therefore in our model we do not have to dedicate special
attention to network coding aspects, nor to the selection process
of the coding nodes. During the construction of our model we
just had to focus on the caching aspects, the selection of the
network coding nodes implicitly resulted from it.

Time dependencies are also not addressed directly, because
the focus is on collecting the packets of a generation. Once
collected enough packets, the content is readily available,
implicitly meaning that the timing of content distribution
conforms to the requirement of the service. If this requires
slightly more time, then it can be considered as a slightly longer
buffering time, which will not affect the (near real-time)
service, because it has less strict delay requirements then a real-
time one.

In the simplest model we search for the number of caching
nodes to serve those nodes that are attached to the same AP, but
we do not limit the cache size. Note that this solution does not
allow that a node attached to APi to request data from a caching
node attached to APj. In order to deduce the minimum number
of overall caching points in the network, we can formulate an
Integer Linear Program (ILP), as presented in the following
sub-section. Then, in section IV-C we refine our model, aiming
to minimize the size of the cache, at the same time letting more
nodes to step in as caches, and we formulate an ILP for this
case, too.

B. Minimizing the Number of Caching Nodes
We have a set of {APi} Access Points, but for our model we

should rather focus on the nodes. The nodes {v1, …, vN} and the
direct links between them { eij } can be considered the vertices
and the edges of a graph G. We define the connectivity matrix
{aij}, where a matrix element is 1 if there is a direct connection
between nodes i and j, 0 otherwise. Note that this can be
obtained by recoding the original content locally with pseudo
random coefficients.

Our goal is to determine the minimal number of caching
nodes, a subset of G. ci is the total capacity of the direct link
from node i (we consider that the total incoming and outgoing
capacities are equal). In order to decode the original content, we
need at least a full generation of encoded packets (the size of a
generation is noted with gw). We introduce two binary variables;
xij denotes a direct link between nodes vi and vj, xij = 1 if vi sends
the cached content to vj, xij = 0 otherwise. Similarly, ui = 1, if
node i is a cache, ui = 0 otherwise.

Our optimization problem is:
minimize ∑ ui (1)

subject to

 i
j

ij cx ∀𝑖𝑖 (2)

 j
i

ij cx ∀𝑗𝑗 (3)

 w
i

ij gx ∀𝑖𝑖, ∀𝑗𝑗 (4)

 ijij ax ∀𝑖𝑖 ∀𝑗𝑗 (5)

 iij ux ∀𝑗𝑗 (6)

 1,0, iji xu ∀𝑖𝑖, ∀𝑗𝑗 (7)-(8)

Equations (2) and (3) ensure that the caches and the regular

nodes cannot exceed their total link capacities. Equation (4)
ensures that all demand is served. Equation (5) assures that xij
can be greater than 0 only if there is a direct physical connection
between the nodes and eq. (6) that xij is greater than 0 only if
the connection is originating from a cache.

The generic form of this kind of optimization problem is
known as the geometric set cover problem, and has been
continuously researched in the last decades. Based on the earlier
research results it is hard to solve [18][19], and the most
versions of the problem are still considered to be NP-hard [20].
Also, [25] states that 0-1 Integer Linear Programming (ILP) is
NP-complete.

C. Minimizing the Cache Size
In the previous two sub-sections we analyzed the ways to

minimize the number of caching nodes, but we did not restrict
the size of the cache. In this subsection we try to minimize the
size of the cache, but we do not restrict the number of caching
nodes. Note that every node is a potential cache node, because
every node plays the streaming content (we exclude those nodes
that do not follow the video stream). Let us keep the same
notations we introduced earlier in this section. We note the
number of chunks stored at node i with ki, and the number of
actually downloaded encoded chunks from i to j with hij .

 Now the objective is to
minimize ∑ ki (9)

subject to

 i
j

ij cx ∀𝑖𝑖 (10)

 j
i

ij cx ∀𝑗𝑗 (11)

 ijij ax ∀𝑖𝑖 ∀𝑗𝑗 (12)

 w
i

ij gh ∀𝑗𝑗 (13)

 0 =< hij <= xij M ∀𝑖𝑖, ∀𝑗𝑗 (14)

 ki >= hij >= 0 ∀𝑖𝑖, ∀𝑗𝑗 (15)

Network Coding Based Caching for
Near Real-Time Streaming Media

MARCH 2015 • VOLUME VII • NUMBER 112

INFOCOMMUNICATIONS JOURNAL

7

D. Discussions on the Caching Details
In the case of RLNC, one question is to set the size of the

Galois field. In our earlier work we used GF(28). This means
that for each packet we should attach a 1 byte coefficient, which
would result in large overhead. Given that there is no need to
encode the same packet multiple times (which would imply the
encoding of the coefficients, too) we can apply the workaround
proposed in [23]. It suffices to embed only the seed to be used
to generate the series of random coefficients. Additionally we
have to take care to use the same pseudo random number
generator at each node. This trick allows us to reduce the
coefficient related overhead to a mere four bytes, and this value
remains constant, whatever the number of encoded segments
might be.

In our model we did not include the effect of the distance
between the wireless source and destination, although in some
wireless technologies this might change the coverage area of
the source. Also we did not consider the possibility of
overhearing [24] (which might be considered as an implicit
multicast packet distribution) that would further increase the
efficiency of our proposal.

Note that when we minimize the number of caches we might
gain a collateral advantage. Because the cache will operate at
higher loads, it will be more efficient, since it avoids idle
periods (in terms of data transfer), under which it still has to
keep its wireless interface active, waiting for newer requests.
Therefore from p.o.v. of green networking the first optimization
problem corresponds to the maximization of a naïve green
networking model. Nevertheless, the details of this relation
should be further investigated (e.g., the effect of the receiver’s
distance from the source).

VI. CONCLUSION
In crowded events several scenarios are possible where

streaming media based services are required. Due to their high
bandwidth demand, these applications heavily stress the local
access networks. In such cases any extra service results in
dramatical QoS degradation. One possibility to support such
services is to offload the access network by local, distributed
caching mechanisms. We have proposed such a solution and
built a model to investigate the behavior of our proposal. We
found that it is more advantageous than a simple distributed
caching solution and discussed the particularities of the
proposed scenarios.

Our proposal allows the design and deployment of added
value services for future large events at lower infrastructure
costs. In our future work we plan to investigate the integration
of caching and peer-to-peer mechanisms for the real time
streaming media distribution, expecting that the application
supporting near real-time services brings further advantages to
the service providers.

ACKNOWLEDGMENT
Csaba Simon’s research work was supported by the

European Union and the State of Hungary, co-financed by the
European Social Fund in the framework of TÁMOP 4.2.4.A/1-
11-1-2012-0001 National Program of Excellence (NKP). The
authors thank their colleagues Krisztián Németh and Attila

Kőrösi for assistance in ILP modeling and simulation.

REFERENCES
[1] Cs. Simon, "In-network caching of media streams in access networks", (in

Hungarian), National Program for Excellence (NKP) Newsletter, pp. 4.,
June 2014

[2] Cs. Simon, “Real-time Streaming Support in Crowds”, EIT ICTLabs
Partner Event – Future Networking Solution Workshop, April 2014

[3] Wi-Fi Alliance, “Wi-Fi Direct” - available from: http://www.wi-
fi.org/discover-and-learn/wi-fi-direct

[4] Qualcomm White Paper, “LTE Direct Overview”,
http://www.qualcomm.com/media/documents/lte-direct-overview, July,
2013.

[5] R. Koetter, M. Medard, “An algebraic approach to network coding”, IEEE
Trans. on Networking, October 2003

[6] Li B, et al., “Random network coding in peer-to-peer networks: From
theory to practice”, 2011

[7] Gajic B, Riihijrvi J and Mhnen P., “Performance evaluation of network
coding: Effects of topology and network traffic for linear and xor coding”,
Journal of Communication, vol. 4(11), pp. 885-893, 2009

[8] S. Chachulski and S. Katti, “Trading structure for randomness in wireless
opportunistic routing”, in Proc. of ACM SIGCOMM 2007

[9] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “The importance
of being opportunistic: Practical network coding for wireless
environments”, in Proc. 43rd Annual Allerton Conference on
Communication, Control, and Computing, 2005

[10] Gkantsidis, Ch., and Pablo R., "Network coding for large scale content
distribution.", in Proc. of IEEE INFOCOM 2005. Vol. 4. IEEE, 2005

[11] D. Traskov, Lenz, J., Ratnakar, N. and Médard, M., “Asynchronous
Network Coded Multicast”, in Proc. of ICC Communication Theory
Symposium, 2010

[12] X. Zhang, G. Neglia, J. Kurose, “Network Coding in Disruption Tolerant
Networks”, Network Coding: Fundamentals and Applications Elsevier
Science (Ed.) 2011

[13] Zs. Zalatnay, Cs. Simon, M. Maliosz, B. Terza, "Managing streaming
services in a distributed testbed", (accepted for publication) MACRO
2015, March 2015

[14] Li, B., Wang, Z., Liu, J., & Zhu, W., “Two decades of internet video
streaming: A retrospective view”, ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP), 9(1s), 33.,
2013

[15] G. Szabo and B. A. Huberman, “Predicting the popularity of online
content,” Communications of the ACM, vol. 53, no. 8, pp. 80–88, 2010

[16] Jaleel, A., Theobald, K. B., Steely Jr, S. C., & Emer, J., “High
performance cache replacement using re-reference interval prediction
(RRIP)”, In Proc. of ACM SIGARCH Computer Architecture News, Vol.
38, No. 3, pp. 60-71, 2010

[17] Cs. Simon, M. Markosz, B. Baranyai, “Network based caching for near
real-time streaming video”, (to appear in) Acta Universitatis Sapiantiae –
Electrical and Mechanical Engineering, 1/2014.

[18] U. Feige, “A threshold of ln n for approximating set cover”, J. Assoc.
Comput. Mach., 45:634–652, 1998

[19] C. Lund and M. Yannakakis, “On the hardness of approximating
minimization problems”, J. Assoc. Comput. Mach., 41(5):960–981, 1994

[20] Har-Peled, S., Lee, M.,“Weighted geometric set cover problems
revisited”, Journal of Computational Geometry, 3(1), 65-85., 2012

[21] Hei, X., Liang, C., Liang, J., Liu, Y., & Ross, K. W., “A measurement
study of a large-scale P2P IPTV system”, IEEE Transactions on
Multimedia, 9(8), pp. 1672-1687., 2007

[22] Silverston, T., Fourmaux, O., “ Measuring P2P IPTV Systems”, In
Proceedings of NOSSDAV (Vol. 7)., 2007

[23] Liu, Z., Wu, C., Li, B., Zhao, S., “UUSee: large-scale operational on-
demand streaming with random network coding”, IEEE INFOCOM,
2010 (pp. 1-9). 2010

[24] D.E. Lucani, M. Médard, M. Stojanovic, “Systematic network coding for
time-division duplexing”, in Proc. IEEE Symposium on Information
Theory Proceedings – ISIT, 2010

[25] Karp R. M., “Reducibility Among Combinatorial Problems”, in Proc.
Sympos. Complexity of Computer Computations, IBM Thomas J. Watson
Res. Center, Yorktown Heights, N.Y. New York: Plenum, p.85-103. 1972

[26] Homepage of Lemon library - http://lemon.cs.elte.hu/trac/lemon
[27] GNU Linear Programming Kit homepage -

https://www.gnu.org/software/glpk/

6

in the system, such as the diameter of the network is 5 hops in
a dense scenario. As explained earlier, the number of nodes
connected to a given AP should be less than the maximum
capacity, in order to maintain the required QoS, so the above
parameters would mean the deployment of 10 APs. We also
investigated a sparse scenario, where nodes are farther away,
and the maximum number of APs is 15. The number of nodes
demanding the service was set to 20% of N, a worst case upper
bound. The gw parameter is also downsized to allow the solver
to complete, and we set it for gw=10, meaning that a node can
not get all its chunks at once from a single cache.

Table I presents the average values resulted from 5
successful runs for each scenario. For the first optimization
problem we show the total number of caches in the network.
For the second optimization problem we show the average
cache size / each node in the network.

We can see that when we optimize on the number of caches,
we get larger numbers compared to the situation when we
would evenly assign the maximum number of requesting nodes
to each cache. This occurs due to the randomness of the
topology: some caches might not serve nodes at full speed, as
the requesting node is out of its contact area. As the network
grows in size, the requests are distributed more evenly on
average, thus relatively fewer caches suffice. For the second
optimization problem we see that the average number of chunks
to be stored at nodes remains low.

C. Particularities of Different Networking Topologies
The three scenarios introduced in section III-A have direct

implications on the underlying networking topologies.
Actually, the difference is made by the users (participants at the
event), whose actions and movement is constrained in different
manners. Obviously, any categorization of such behavior
simplifies the scenario and in the case of real life deployment
the operator or service provider should conduct its own
assessment on the user group it wants to serve. With this remark
in mind we still can model with good accuracy the behavior of
the users, which has direct effect on the networking topology
and mobility of their handheld smart devices. In the following
we will focus on the nodes, even if the decision on their position

and mobility is taken by their respective owners.
We have analysed the requirements in each scenario and we

recommended the appropriate caching method for each, as
follows (also see Table II).

In the Tour scenario the nodes are partitioned in separate
groups along the track of the competition. Practically this
results in smaller, isolated groups of nodes. Additionally, once
a viewer joins a group, she/he will stick to that group. We have
in this group lower number of nodes and higher group stability,
so we considered that in this particular scenario we should
rethink the priorities based on which we selected the network
coding method implemented in the caches. Note that the RLNC
variant of network coding offers us scalability (we can bring in
many coding nodes if more caches are required) and flexibility
(we do not have to define in advance the roles among caches).
Nevertheless, in this tour scenario it is worth considering the
fixed network coding, which trades flexibility for simplicity.
Practically this requires in addition the definition of the nodes
that have to act as caches, encoding nodes and for each cache
the nodes that are linked to them.

The lightest technique for fixed network coding is the bitwise
XOR [5][7]. In order to confer some flexibility and robustness
to the caches using XOR based coding we propose the
following solution. First, several nodes should agree on serving
as caches. Then they should divide the roles, some of them
storing packets without encoding, while at least one of them
should store bitwise XOR-ed packets. Once constructed this
caching group, any requester should choose any combination of
those caches in order to be able to replay the stream.

In the stadium scenario we have static nodes, bound to the
seats and we have a high node density. But due to the large
number of nodes we might use the advantages of statistical
multiplexing of more sources compared to the tour scenario.
Under such conditions we should try to use the RLNC based
method and minimize the number of caches. In order to avoid
the battery drain, periodically we should change the caching
roles of the nodes, similarly to the top peer rotation mechanism
in SopCast.

Compared to the previous two scenarios, in the festival
scenario we have much higher node mobility, because the
participants can walk within the festival area. Also, we have
large number of nodes. This leads us to the use of RLNC based
solution, minimizing the cache size. This also spreads content
as much as possible, and the nodes are not forced to rely only
on few caches (which would happen if we minimize the number
of caches instead).

TABLE II
CACHING METHODS FOR DIFFERENT SCENARIOS

 Stadium Festival Tour

XOR based coding X

Minimal nr. of caches X

Minimal cache size X

TABLE I
OPTIMAL CACHE PARAMETERS FROM

THE OPTIMIZATION RESULTS OF ILP MODELS

 N = 10 N = 50 N = 100

Total nr. of caches
(dense)

2 7 13

Total nr. of caches
(sparse)

3 10 15

Average cache sizes
(dense)

1 3 4

Average cache sizes
(sparse)

2 4 5

6

in the system, such as the diameter of the network is 5 hops in
a dense scenario. As explained earlier, the number of nodes
connected to a given AP should be less than the maximum
capacity, in order to maintain the required QoS, so the above
parameters would mean the deployment of 10 APs. We also
investigated a sparse scenario, where nodes are farther away,
and the maximum number of APs is 15. The number of nodes
demanding the service was set to 20% of N, a worst case upper
bound. The gw parameter is also downsized to allow the solver
to complete, and we set it for gw=10, meaning that a node can
not get all its chunks at once from a single cache.

Table I presents the average values resulted from 5
successful runs for each scenario. For the first optimization
problem we show the total number of caches in the network.
For the second optimization problem we show the average
cache size / each node in the network.

We can see that when we optimize on the number of caches,
we get larger numbers compared to the situation when we
would evenly assign the maximum number of requesting nodes
to each cache. This occurs due to the randomness of the
topology: some caches might not serve nodes at full speed, as
the requesting node is out of its contact area. As the network
grows in size, the requests are distributed more evenly on
average, thus relatively fewer caches suffice. For the second
optimization problem we see that the average number of chunks
to be stored at nodes remains low.

C. Particularities of Different Networking Topologies
The three scenarios introduced in section III-A have direct

implications on the underlying networking topologies.
Actually, the difference is made by the users (participants at the
event), whose actions and movement is constrained in different
manners. Obviously, any categorization of such behavior
simplifies the scenario and in the case of real life deployment
the operator or service provider should conduct its own
assessment on the user group it wants to serve. With this remark
in mind we still can model with good accuracy the behavior of
the users, which has direct effect on the networking topology
and mobility of their handheld smart devices. In the following
we will focus on the nodes, even if the decision on their position

and mobility is taken by their respective owners.
We have analysed the requirements in each scenario and we

recommended the appropriate caching method for each, as
follows (also see Table II).

In the Tour scenario the nodes are partitioned in separate
groups along the track of the competition. Practically this
results in smaller, isolated groups of nodes. Additionally, once
a viewer joins a group, she/he will stick to that group. We have
in this group lower number of nodes and higher group stability,
so we considered that in this particular scenario we should
rethink the priorities based on which we selected the network
coding method implemented in the caches. Note that the RLNC
variant of network coding offers us scalability (we can bring in
many coding nodes if more caches are required) and flexibility
(we do not have to define in advance the roles among caches).
Nevertheless, in this tour scenario it is worth considering the
fixed network coding, which trades flexibility for simplicity.
Practically this requires in addition the definition of the nodes
that have to act as caches, encoding nodes and for each cache
the nodes that are linked to them.

The lightest technique for fixed network coding is the bitwise
XOR [5][7]. In order to confer some flexibility and robustness
to the caches using XOR based coding we propose the
following solution. First, several nodes should agree on serving
as caches. Then they should divide the roles, some of them
storing packets without encoding, while at least one of them
should store bitwise XOR-ed packets. Once constructed this
caching group, any requester should choose any combination of
those caches in order to be able to replay the stream.

In the stadium scenario we have static nodes, bound to the
seats and we have a high node density. But due to the large
number of nodes we might use the advantages of statistical
multiplexing of more sources compared to the tour scenario.
Under such conditions we should try to use the RLNC based
method and minimize the number of caches. In order to avoid
the battery drain, periodically we should change the caching
roles of the nodes, similarly to the top peer rotation mechanism
in SopCast.

Compared to the previous two scenarios, in the festival
scenario we have much higher node mobility, because the
participants can walk within the festival area. Also, we have
large number of nodes. This leads us to the use of RLNC based
solution, minimizing the cache size. This also spreads content
as much as possible, and the nodes are not forced to rely only
on few caches (which would happen if we minimize the number
of caches instead).

TABLE II
CACHING METHODS FOR DIFFERENT SCENARIOS

 Stadium Festival Tour

XOR based coding X

Minimal nr. of caches X

Minimal cache size X

TABLE I
OPTIMAL CACHE PARAMETERS FROM

THE OPTIMIZATION RESULTS OF ILP MODELS

 N = 10 N = 50 N = 100

Total nr. of caches
(dense)

2 7 13

Total nr. of caches
(sparse)

3 10 15

Average cache sizes
(dense)

1 3 4

Average cache sizes
(sparse)

2 4 5

6

in the system, such as the diameter of the network is 5 hops in
a dense scenario. As explained earlier, the number of nodes
connected to a given AP should be less than the maximum
capacity, in order to maintain the required QoS, so the above
parameters would mean the deployment of 10 APs. We also
investigated a sparse scenario, where nodes are farther away,
and the maximum number of APs is 15. The number of nodes
demanding the service was set to 20% of N, a worst case upper
bound. The gw parameter is also downsized to allow the solver
to complete, and we set it for gw=10, meaning that a node can
not get all its chunks at once from a single cache.

Table I presents the average values resulted from 5
successful runs for each scenario. For the first optimization
problem we show the total number of caches in the network.
For the second optimization problem we show the average
cache size / each node in the network.

We can see that when we optimize on the number of caches,
we get larger numbers compared to the situation when we
would evenly assign the maximum number of requesting nodes
to each cache. This occurs due to the randomness of the
topology: some caches might not serve nodes at full speed, as
the requesting node is out of its contact area. As the network
grows in size, the requests are distributed more evenly on
average, thus relatively fewer caches suffice. For the second
optimization problem we see that the average number of chunks
to be stored at nodes remains low.

C. Particularities of Different Networking Topologies
The three scenarios introduced in section III-A have direct

implications on the underlying networking topologies.
Actually, the difference is made by the users (participants at the
event), whose actions and movement is constrained in different
manners. Obviously, any categorization of such behavior
simplifies the scenario and in the case of real life deployment
the operator or service provider should conduct its own
assessment on the user group it wants to serve. With this remark
in mind we still can model with good accuracy the behavior of
the users, which has direct effect on the networking topology
and mobility of their handheld smart devices. In the following
we will focus on the nodes, even if the decision on their position

and mobility is taken by their respective owners.
We have analysed the requirements in each scenario and we

recommended the appropriate caching method for each, as
follows (also see Table II).

In the Tour scenario the nodes are partitioned in separate
groups along the track of the competition. Practically this
results in smaller, isolated groups of nodes. Additionally, once
a viewer joins a group, she/he will stick to that group. We have
in this group lower number of nodes and higher group stability,
so we considered that in this particular scenario we should
rethink the priorities based on which we selected the network
coding method implemented in the caches. Note that the RLNC
variant of network coding offers us scalability (we can bring in
many coding nodes if more caches are required) and flexibility
(we do not have to define in advance the roles among caches).
Nevertheless, in this tour scenario it is worth considering the
fixed network coding, which trades flexibility for simplicity.
Practically this requires in addition the definition of the nodes
that have to act as caches, encoding nodes and for each cache
the nodes that are linked to them.

The lightest technique for fixed network coding is the bitwise
XOR [5][7]. In order to confer some flexibility and robustness
to the caches using XOR based coding we propose the
following solution. First, several nodes should agree on serving
as caches. Then they should divide the roles, some of them
storing packets without encoding, while at least one of them
should store bitwise XOR-ed packets. Once constructed this
caching group, any requester should choose any combination of
those caches in order to be able to replay the stream.

In the stadium scenario we have static nodes, bound to the
seats and we have a high node density. But due to the large
number of nodes we might use the advantages of statistical
multiplexing of more sources compared to the tour scenario.
Under such conditions we should try to use the RLNC based
method and minimize the number of caches. In order to avoid
the battery drain, periodically we should change the caching
roles of the nodes, similarly to the top peer rotation mechanism
in SopCast.

Compared to the previous two scenarios, in the festival
scenario we have much higher node mobility, because the
participants can walk within the festival area. Also, we have
large number of nodes. This leads us to the use of RLNC based
solution, minimizing the cache size. This also spreads content
as much as possible, and the nodes are not forced to rely only
on few caches (which would happen if we minimize the number
of caches instead).

TABLE II
CACHING METHODS FOR DIFFERENT SCENARIOS

 Stadium Festival Tour

XOR based coding X

Minimal nr. of caches X

Minimal cache size X

TABLE I
OPTIMAL CACHE PARAMETERS FROM

THE OPTIMIZATION RESULTS OF ILP MODELS

 N = 10 N = 50 N = 100

Total nr. of caches
(dense)

2 7 13

Total nr. of caches
(sparse)

3 10 15

Average cache sizes
(dense)

1 3 4

Average cache sizes
(sparse)

2 4 5

6

in the system, such as the diameter of the network is 5 hops in
a dense scenario. As explained earlier, the number of nodes
connected to a given AP should be less than the maximum
capacity, in order to maintain the required QoS, so the above
parameters would mean the deployment of 10 APs. We also
investigated a sparse scenario, where nodes are farther away,
and the maximum number of APs is 15. The number of nodes
demanding the service was set to 20% of N, a worst case upper
bound. The gw parameter is also downsized to allow the solver
to complete, and we set it for gw=10, meaning that a node can
not get all its chunks at once from a single cache.

Table I presents the average values resulted from 5
successful runs for each scenario. For the first optimization
problem we show the total number of caches in the network.
For the second optimization problem we show the average
cache size / each node in the network.

We can see that when we optimize on the number of caches,
we get larger numbers compared to the situation when we
would evenly assign the maximum number of requesting nodes
to each cache. This occurs due to the randomness of the
topology: some caches might not serve nodes at full speed, as
the requesting node is out of its contact area. As the network
grows in size, the requests are distributed more evenly on
average, thus relatively fewer caches suffice. For the second
optimization problem we see that the average number of chunks
to be stored at nodes remains low.

C. Particularities of Different Networking Topologies
The three scenarios introduced in section III-A have direct

implications on the underlying networking topologies.
Actually, the difference is made by the users (participants at the
event), whose actions and movement is constrained in different
manners. Obviously, any categorization of such behavior
simplifies the scenario and in the case of real life deployment
the operator or service provider should conduct its own
assessment on the user group it wants to serve. With this remark
in mind we still can model with good accuracy the behavior of
the users, which has direct effect on the networking topology
and mobility of their handheld smart devices. In the following
we will focus on the nodes, even if the decision on their position

and mobility is taken by their respective owners.
We have analysed the requirements in each scenario and we

recommended the appropriate caching method for each, as
follows (also see Table II).

In the Tour scenario the nodes are partitioned in separate
groups along the track of the competition. Practically this
results in smaller, isolated groups of nodes. Additionally, once
a viewer joins a group, she/he will stick to that group. We have
in this group lower number of nodes and higher group stability,
so we considered that in this particular scenario we should
rethink the priorities based on which we selected the network
coding method implemented in the caches. Note that the RLNC
variant of network coding offers us scalability (we can bring in
many coding nodes if more caches are required) and flexibility
(we do not have to define in advance the roles among caches).
Nevertheless, in this tour scenario it is worth considering the
fixed network coding, which trades flexibility for simplicity.
Practically this requires in addition the definition of the nodes
that have to act as caches, encoding nodes and for each cache
the nodes that are linked to them.

The lightest technique for fixed network coding is the bitwise
XOR [5][7]. In order to confer some flexibility and robustness
to the caches using XOR based coding we propose the
following solution. First, several nodes should agree on serving
as caches. Then they should divide the roles, some of them
storing packets without encoding, while at least one of them
should store bitwise XOR-ed packets. Once constructed this
caching group, any requester should choose any combination of
those caches in order to be able to replay the stream.

In the stadium scenario we have static nodes, bound to the
seats and we have a high node density. But due to the large
number of nodes we might use the advantages of statistical
multiplexing of more sources compared to the tour scenario.
Under such conditions we should try to use the RLNC based
method and minimize the number of caches. In order to avoid
the battery drain, periodically we should change the caching
roles of the nodes, similarly to the top peer rotation mechanism
in SopCast.

Compared to the previous two scenarios, in the festival
scenario we have much higher node mobility, because the
participants can walk within the festival area. Also, we have
large number of nodes. This leads us to the use of RLNC based
solution, minimizing the cache size. This also spreads content
as much as possible, and the nodes are not forced to rely only
on few caches (which would happen if we minimize the number
of caches instead).

TABLE II
CACHING METHODS FOR DIFFERENT SCENARIOS

 Stadium Festival Tour

XOR based coding X

Minimal nr. of caches X

Minimal cache size X

TABLE I
OPTIMAL CACHE PARAMETERS FROM

THE OPTIMIZATION RESULTS OF ILP MODELS

 N = 10 N = 50 N = 100

Total nr. of caches
(dense)

2 7 13

Total nr. of caches
(sparse)

3 10 15

Average cache sizes
(dense)

1 3 4

Average cache sizes
(sparse)

2 4 5

6

in the system, such as the diameter of the network is 5 hops in
a dense scenario. As explained earlier, the number of nodes
connected to a given AP should be less than the maximum
capacity, in order to maintain the required QoS, so the above
parameters would mean the deployment of 10 APs. We also
investigated a sparse scenario, where nodes are farther away,
and the maximum number of APs is 15. The number of nodes
demanding the service was set to 20% of N, a worst case upper
bound. The gw parameter is also downsized to allow the solver
to complete, and we set it for gw=10, meaning that a node can
not get all its chunks at once from a single cache.

Table I presents the average values resulted from 5
successful runs for each scenario. For the first optimization
problem we show the total number of caches in the network.
For the second optimization problem we show the average
cache size / each node in the network.

We can see that when we optimize on the number of caches,
we get larger numbers compared to the situation when we
would evenly assign the maximum number of requesting nodes
to each cache. This occurs due to the randomness of the
topology: some caches might not serve nodes at full speed, as
the requesting node is out of its contact area. As the network
grows in size, the requests are distributed more evenly on
average, thus relatively fewer caches suffice. For the second
optimization problem we see that the average number of chunks
to be stored at nodes remains low.

C. Particularities of Different Networking Topologies
The three scenarios introduced in section III-A have direct

implications on the underlying networking topologies.
Actually, the difference is made by the users (participants at the
event), whose actions and movement is constrained in different
manners. Obviously, any categorization of such behavior
simplifies the scenario and in the case of real life deployment
the operator or service provider should conduct its own
assessment on the user group it wants to serve. With this remark
in mind we still can model with good accuracy the behavior of
the users, which has direct effect on the networking topology
and mobility of their handheld smart devices. In the following
we will focus on the nodes, even if the decision on their position

and mobility is taken by their respective owners.
We have analysed the requirements in each scenario and we

recommended the appropriate caching method for each, as
follows (also see Table II).

In the Tour scenario the nodes are partitioned in separate
groups along the track of the competition. Practically this
results in smaller, isolated groups of nodes. Additionally, once
a viewer joins a group, she/he will stick to that group. We have
in this group lower number of nodes and higher group stability,
so we considered that in this particular scenario we should
rethink the priorities based on which we selected the network
coding method implemented in the caches. Note that the RLNC
variant of network coding offers us scalability (we can bring in
many coding nodes if more caches are required) and flexibility
(we do not have to define in advance the roles among caches).
Nevertheless, in this tour scenario it is worth considering the
fixed network coding, which trades flexibility for simplicity.
Practically this requires in addition the definition of the nodes
that have to act as caches, encoding nodes and for each cache
the nodes that are linked to them.

The lightest technique for fixed network coding is the bitwise
XOR [5][7]. In order to confer some flexibility and robustness
to the caches using XOR based coding we propose the
following solution. First, several nodes should agree on serving
as caches. Then they should divide the roles, some of them
storing packets without encoding, while at least one of them
should store bitwise XOR-ed packets. Once constructed this
caching group, any requester should choose any combination of
those caches in order to be able to replay the stream.

In the stadium scenario we have static nodes, bound to the
seats and we have a high node density. But due to the large
number of nodes we might use the advantages of statistical
multiplexing of more sources compared to the tour scenario.
Under such conditions we should try to use the RLNC based
method and minimize the number of caches. In order to avoid
the battery drain, periodically we should change the caching
roles of the nodes, similarly to the top peer rotation mechanism
in SopCast.

Compared to the previous two scenarios, in the festival
scenario we have much higher node mobility, because the
participants can walk within the festival area. Also, we have
large number of nodes. This leads us to the use of RLNC based
solution, minimizing the cache size. This also spreads content
as much as possible, and the nodes are not forced to rely only
on few caches (which would happen if we minimize the number
of caches instead).

TABLE II
CACHING METHODS FOR DIFFERENT SCENARIOS

 Stadium Festival Tour

XOR based coding X

Minimal nr. of caches X

Minimal cache size X

TABLE I
OPTIMAL CACHE PARAMETERS FROM

THE OPTIMIZATION RESULTS OF ILP MODELS

 N = 10 N = 50 N = 100

Total nr. of caches
(dense)

2 7 13

Total nr. of caches
(sparse)

3 10 15

Average cache sizes
(dense)

1 3 4

Average cache sizes
(sparse)

2 4 5

Network Coding Based Caching for
Near Real-Time Streaming Media

INFOCOMMUNICATIONS JOURNAL

MARCH 2015 • VOLUME VII • NUMBER 1 13

7

D. Discussions on the Caching Details
In the case of RLNC, one question is to set the size of the

Galois field. In our earlier work we used GF(28). This means
that for each packet we should attach a 1 byte coefficient, which
would result in large overhead. Given that there is no need to
encode the same packet multiple times (which would imply the
encoding of the coefficients, too) we can apply the workaround
proposed in [23]. It suffices to embed only the seed to be used
to generate the series of random coefficients. Additionally we
have to take care to use the same pseudo random number
generator at each node. This trick allows us to reduce the
coefficient related overhead to a mere four bytes, and this value
remains constant, whatever the number of encoded segments
might be.

In our model we did not include the effect of the distance
between the wireless source and destination, although in some
wireless technologies this might change the coverage area of
the source. Also we did not consider the possibility of
overhearing [24] (which might be considered as an implicit
multicast packet distribution) that would further increase the
efficiency of our proposal.

Note that when we minimize the number of caches we might
gain a collateral advantage. Because the cache will operate at
higher loads, it will be more efficient, since it avoids idle
periods (in terms of data transfer), under which it still has to
keep its wireless interface active, waiting for newer requests.
Therefore from p.o.v. of green networking the first optimization
problem corresponds to the maximization of a naïve green
networking model. Nevertheless, the details of this relation
should be further investigated (e.g., the effect of the receiver’s
distance from the source).

VI. CONCLUSION
In crowded events several scenarios are possible where

streaming media based services are required. Due to their high
bandwidth demand, these applications heavily stress the local
access networks. In such cases any extra service results in
dramatical QoS degradation. One possibility to support such
services is to offload the access network by local, distributed
caching mechanisms. We have proposed such a solution and
built a model to investigate the behavior of our proposal. We
found that it is more advantageous than a simple distributed
caching solution and discussed the particularities of the
proposed scenarios.

Our proposal allows the design and deployment of added
value services for future large events at lower infrastructure
costs. In our future work we plan to investigate the integration
of caching and peer-to-peer mechanisms for the real time
streaming media distribution, expecting that the application
supporting near real-time services brings further advantages to
the service providers.

ACKNOWLEDGMENT
Csaba Simon’s research work was supported by the

European Union and the State of Hungary, co-financed by the
European Social Fund in the framework of TÁMOP 4.2.4.A/1-
11-1-2012-0001 National Program of Excellence (NKP). The
authors thank their colleagues Krisztián Németh and Attila

Kőrösi for assistance in ILP modeling and simulation.

REFERENCES
[1] Cs. Simon, "In-network caching of media streams in access networks", (in

Hungarian), National Program for Excellence (NKP) Newsletter, pp. 4.,
June 2014

[2] Cs. Simon, “Real-time Streaming Support in Crowds”, EIT ICTLabs
Partner Event – Future Networking Solution Workshop, April 2014

[3] Wi-Fi Alliance, “Wi-Fi Direct” - available from: http://www.wi-
fi.org/discover-and-learn/wi-fi-direct

[4] Qualcomm White Paper, “LTE Direct Overview”,
http://www.qualcomm.com/media/documents/lte-direct-overview, July,
2013.

[5] R. Koetter, M. Medard, “An algebraic approach to network coding”, IEEE
Trans. on Networking, October 2003

[6] Li B, et al., “Random network coding in peer-to-peer networks: From
theory to practice”, 2011

[7] Gajic B, Riihijrvi J and Mhnen P., “Performance evaluation of network
coding: Effects of topology and network traffic for linear and xor coding”,
Journal of Communication, vol. 4(11), pp. 885-893, 2009

[8] S. Chachulski and S. Katti, “Trading structure for randomness in wireless
opportunistic routing”, in Proc. of ACM SIGCOMM 2007

[9] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “The importance
of being opportunistic: Practical network coding for wireless
environments”, in Proc. 43rd Annual Allerton Conference on
Communication, Control, and Computing, 2005

[10] Gkantsidis, Ch., and Pablo R., "Network coding for large scale content
distribution.", in Proc. of IEEE INFOCOM 2005. Vol. 4. IEEE, 2005

[11] D. Traskov, Lenz, J., Ratnakar, N. and Médard, M., “Asynchronous
Network Coded Multicast”, in Proc. of ICC Communication Theory
Symposium, 2010

[12] X. Zhang, G. Neglia, J. Kurose, “Network Coding in Disruption Tolerant
Networks”, Network Coding: Fundamentals and Applications Elsevier
Science (Ed.) 2011

[13] Zs. Zalatnay, Cs. Simon, M. Maliosz, B. Terza, "Managing streaming
services in a distributed testbed", (accepted for publication) MACRO
2015, March 2015

[14] Li, B., Wang, Z., Liu, J., & Zhu, W., “Two decades of internet video
streaming: A retrospective view”, ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP), 9(1s), 33.,
2013

[15] G. Szabo and B. A. Huberman, “Predicting the popularity of online
content,” Communications of the ACM, vol. 53, no. 8, pp. 80–88, 2010

[16] Jaleel, A., Theobald, K. B., Steely Jr, S. C., & Emer, J., “High
performance cache replacement using re-reference interval prediction
(RRIP)”, In Proc. of ACM SIGARCH Computer Architecture News, Vol.
38, No. 3, pp. 60-71, 2010

[17] Cs. Simon, M. Markosz, B. Baranyai, “Network based caching for near
real-time streaming video”, (to appear in) Acta Universitatis Sapiantiae –
Electrical and Mechanical Engineering, 1/2014.

[18] U. Feige, “A threshold of ln n for approximating set cover”, J. Assoc.
Comput. Mach., 45:634–652, 1998

[19] C. Lund and M. Yannakakis, “On the hardness of approximating
minimization problems”, J. Assoc. Comput. Mach., 41(5):960–981, 1994

[20] Har-Peled, S., Lee, M.,“Weighted geometric set cover problems
revisited”, Journal of Computational Geometry, 3(1), 65-85., 2012

[21] Hei, X., Liang, C., Liang, J., Liu, Y., & Ross, K. W., “A measurement
study of a large-scale P2P IPTV system”, IEEE Transactions on
Multimedia, 9(8), pp. 1672-1687., 2007

[22] Silverston, T., Fourmaux, O., “ Measuring P2P IPTV Systems”, In
Proceedings of NOSSDAV (Vol. 7)., 2007

[23] Liu, Z., Wu, C., Li, B., Zhao, S., “UUSee: large-scale operational on-
demand streaming with random network coding”, IEEE INFOCOM,
2010 (pp. 1-9). 2010

[24] D.E. Lucani, M. Médard, M. Stojanovic, “Systematic network coding for
time-division duplexing”, in Proc. IEEE Symposium on Information
Theory Proceedings – ISIT, 2010

[25] Karp R. M., “Reducibility Among Combinatorial Problems”, in Proc.
Sympos. Complexity of Computer Computations, IBM Thomas J. Watson
Res. Center, Yorktown Heights, N.Y. New York: Plenum, p.85-103. 1972

[26] Homepage of Lemon library - http://lemon.cs.elte.hu/trac/lemon
[27] GNU Linear Programming Kit homepage -

https://www.gnu.org/software/glpk/

6

in the system, such as the diameter of the network is 5 hops in
a dense scenario. As explained earlier, the number of nodes
connected to a given AP should be less than the maximum
capacity, in order to maintain the required QoS, so the above
parameters would mean the deployment of 10 APs. We also
investigated a sparse scenario, where nodes are farther away,
and the maximum number of APs is 15. The number of nodes
demanding the service was set to 20% of N, a worst case upper
bound. The gw parameter is also downsized to allow the solver
to complete, and we set it for gw=10, meaning that a node can
not get all its chunks at once from a single cache.

Table I presents the average values resulted from 5
successful runs for each scenario. For the first optimization
problem we show the total number of caches in the network.
For the second optimization problem we show the average
cache size / each node in the network.

We can see that when we optimize on the number of caches,
we get larger numbers compared to the situation when we
would evenly assign the maximum number of requesting nodes
to each cache. This occurs due to the randomness of the
topology: some caches might not serve nodes at full speed, as
the requesting node is out of its contact area. As the network
grows in size, the requests are distributed more evenly on
average, thus relatively fewer caches suffice. For the second
optimization problem we see that the average number of chunks
to be stored at nodes remains low.

C. Particularities of Different Networking Topologies
The three scenarios introduced in section III-A have direct

implications on the underlying networking topologies.
Actually, the difference is made by the users (participants at the
event), whose actions and movement is constrained in different
manners. Obviously, any categorization of such behavior
simplifies the scenario and in the case of real life deployment
the operator or service provider should conduct its own
assessment on the user group it wants to serve. With this remark
in mind we still can model with good accuracy the behavior of
the users, which has direct effect on the networking topology
and mobility of their handheld smart devices. In the following
we will focus on the nodes, even if the decision on their position

and mobility is taken by their respective owners.
We have analysed the requirements in each scenario and we

recommended the appropriate caching method for each, as
follows (also see Table II).

In the Tour scenario the nodes are partitioned in separate
groups along the track of the competition. Practically this
results in smaller, isolated groups of nodes. Additionally, once
a viewer joins a group, she/he will stick to that group. We have
in this group lower number of nodes and higher group stability,
so we considered that in this particular scenario we should
rethink the priorities based on which we selected the network
coding method implemented in the caches. Note that the RLNC
variant of network coding offers us scalability (we can bring in
many coding nodes if more caches are required) and flexibility
(we do not have to define in advance the roles among caches).
Nevertheless, in this tour scenario it is worth considering the
fixed network coding, which trades flexibility for simplicity.
Practically this requires in addition the definition of the nodes
that have to act as caches, encoding nodes and for each cache
the nodes that are linked to them.

The lightest technique for fixed network coding is the bitwise
XOR [5][7]. In order to confer some flexibility and robustness
to the caches using XOR based coding we propose the
following solution. First, several nodes should agree on serving
as caches. Then they should divide the roles, some of them
storing packets without encoding, while at least one of them
should store bitwise XOR-ed packets. Once constructed this
caching group, any requester should choose any combination of
those caches in order to be able to replay the stream.

In the stadium scenario we have static nodes, bound to the
seats and we have a high node density. But due to the large
number of nodes we might use the advantages of statistical
multiplexing of more sources compared to the tour scenario.
Under such conditions we should try to use the RLNC based
method and minimize the number of caches. In order to avoid
the battery drain, periodically we should change the caching
roles of the nodes, similarly to the top peer rotation mechanism
in SopCast.

Compared to the previous two scenarios, in the festival
scenario we have much higher node mobility, because the
participants can walk within the festival area. Also, we have
large number of nodes. This leads us to the use of RLNC based
solution, minimizing the cache size. This also spreads content
as much as possible, and the nodes are not forced to rely only
on few caches (which would happen if we minimize the number
of caches instead).

TABLE II
CACHING METHODS FOR DIFFERENT SCENARIOS

 Stadium Festival Tour

XOR based coding X

Minimal nr. of caches X

Minimal cache size X

TABLE I
OPTIMAL CACHE PARAMETERS FROM

THE OPTIMIZATION RESULTS OF ILP MODELS

 N = 10 N = 50 N = 100

Total nr. of caches
(dense)

2 7 13

Total nr. of caches
(sparse)

3 10 15

Average cache sizes
(dense)

1 3 4

Average cache sizes
(sparse)

2 4 5

7

D. Discussions on the Caching Details
In the case of RLNC, one question is to set the size of the

Galois field. In our earlier work we used GF(28). This means
that for each packet we should attach a 1 byte coefficient, which
would result in large overhead. Given that there is no need to
encode the same packet multiple times (which would imply the
encoding of the coefficients, too) we can apply the workaround
proposed in [23]. It suffices to embed only the seed to be used
to generate the series of random coefficients. Additionally we
have to take care to use the same pseudo random number
generator at each node. This trick allows us to reduce the
coefficient related overhead to a mere four bytes, and this value
remains constant, whatever the number of encoded segments
might be.

In our model we did not include the effect of the distance
between the wireless source and destination, although in some
wireless technologies this might change the coverage area of
the source. Also we did not consider the possibility of
overhearing [24] (which might be considered as an implicit
multicast packet distribution) that would further increase the
efficiency of our proposal.

Note that when we minimize the number of caches we might
gain a collateral advantage. Because the cache will operate at
higher loads, it will be more efficient, since it avoids idle
periods (in terms of data transfer), under which it still has to
keep its wireless interface active, waiting for newer requests.
Therefore from p.o.v. of green networking the first optimization
problem corresponds to the maximization of a naïve green
networking model. Nevertheless, the details of this relation
should be further investigated (e.g., the effect of the receiver’s
distance from the source).

VI. CONCLUSION
In crowded events several scenarios are possible where

streaming media based services are required. Due to their high
bandwidth demand, these applications heavily stress the local
access networks. In such cases any extra service results in
dramatical QoS degradation. One possibility to support such
services is to offload the access network by local, distributed
caching mechanisms. We have proposed such a solution and
built a model to investigate the behavior of our proposal. We
found that it is more advantageous than a simple distributed
caching solution and discussed the particularities of the
proposed scenarios.

Our proposal allows the design and deployment of added
value services for future large events at lower infrastructure
costs. In our future work we plan to investigate the integration
of caching and peer-to-peer mechanisms for the real time
streaming media distribution, expecting that the application
supporting near real-time services brings further advantages to
the service providers.

ACKNOWLEDGMENT
Csaba Simon’s research work was supported by the

European Union and the State of Hungary, co-financed by the
European Social Fund in the framework of TÁMOP 4.2.4.A/1-
11-1-2012-0001 National Program of Excellence (NKP). The
authors thank their colleagues Krisztián Németh and Attila

Kőrösi for assistance in ILP modeling and simulation.

REFERENCES
[1] Cs. Simon, "In-network caching of media streams in access networks", (in

Hungarian), National Program for Excellence (NKP) Newsletter, pp. 4.,
June 2014

[2] Cs. Simon, “Real-time Streaming Support in Crowds”, EIT ICTLabs
Partner Event – Future Networking Solution Workshop, April 2014

[3] Wi-Fi Alliance, “Wi-Fi Direct” - available from: http://www.wi-
fi.org/discover-and-learn/wi-fi-direct

[4] Qualcomm White Paper, “LTE Direct Overview”,
http://www.qualcomm.com/media/documents/lte-direct-overview, July,
2013.

[5] R. Koetter, M. Medard, “An algebraic approach to network coding”, IEEE
Trans. on Networking, October 2003

[6] Li B, et al., “Random network coding in peer-to-peer networks: From
theory to practice”, 2011

[7] Gajic B, Riihijrvi J and Mhnen P., “Performance evaluation of network
coding: Effects of topology and network traffic for linear and xor coding”,
Journal of Communication, vol. 4(11), pp. 885-893, 2009

[8] S. Chachulski and S. Katti, “Trading structure for randomness in wireless
opportunistic routing”, in Proc. of ACM SIGCOMM 2007

[9] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “The importance
of being opportunistic: Practical network coding for wireless
environments”, in Proc. 43rd Annual Allerton Conference on
Communication, Control, and Computing, 2005

[10] Gkantsidis, Ch., and Pablo R., "Network coding for large scale content
distribution.", in Proc. of IEEE INFOCOM 2005. Vol. 4. IEEE, 2005

[11] D. Traskov, Lenz, J., Ratnakar, N. and Médard, M., “Asynchronous
Network Coded Multicast”, in Proc. of ICC Communication Theory
Symposium, 2010

[12] X. Zhang, G. Neglia, J. Kurose, “Network Coding in Disruption Tolerant
Networks”, Network Coding: Fundamentals and Applications Elsevier
Science (Ed.) 2011

[13] Zs. Zalatnay, Cs. Simon, M. Maliosz, B. Terza, "Managing streaming
services in a distributed testbed", (accepted for publication) MACRO
2015, March 2015

[14] Li, B., Wang, Z., Liu, J., & Zhu, W., “Two decades of internet video
streaming: A retrospective view”, ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP), 9(1s), 33.,
2013

[15] G. Szabo and B. A. Huberman, “Predicting the popularity of online
content,” Communications of the ACM, vol. 53, no. 8, pp. 80–88, 2010

[16] Jaleel, A., Theobald, K. B., Steely Jr, S. C., & Emer, J., “High
performance cache replacement using re-reference interval prediction
(RRIP)”, In Proc. of ACM SIGARCH Computer Architecture News, Vol.
38, No. 3, pp. 60-71, 2010

[17] Cs. Simon, M. Markosz, B. Baranyai, “Network based caching for near
real-time streaming video”, (to appear in) Acta Universitatis Sapiantiae –
Electrical and Mechanical Engineering, 1/2014.

[18] U. Feige, “A threshold of ln n for approximating set cover”, J. Assoc.
Comput. Mach., 45:634–652, 1998

[19] C. Lund and M. Yannakakis, “On the hardness of approximating
minimization problems”, J. Assoc. Comput. Mach., 41(5):960–981, 1994

[20] Har-Peled, S., Lee, M.,“Weighted geometric set cover problems
revisited”, Journal of Computational Geometry, 3(1), 65-85., 2012

[21] Hei, X., Liang, C., Liang, J., Liu, Y., & Ross, K. W., “A measurement
study of a large-scale P2P IPTV system”, IEEE Transactions on
Multimedia, 9(8), pp. 1672-1687., 2007

[22] Silverston, T., Fourmaux, O., “ Measuring P2P IPTV Systems”, In
Proceedings of NOSSDAV (Vol. 7)., 2007

[23] Liu, Z., Wu, C., Li, B., Zhao, S., “UUSee: large-scale operational on-
demand streaming with random network coding”, IEEE INFOCOM,
2010 (pp. 1-9). 2010

[24] D.E. Lucani, M. Médard, M. Stojanovic, “Systematic network coding for
time-division duplexing”, in Proc. IEEE Symposium on Information
Theory Proceedings – ISIT, 2010

[25] Karp R. M., “Reducibility Among Combinatorial Problems”, in Proc.
Sympos. Complexity of Computer Computations, IBM Thomas J. Watson
Res. Center, Yorktown Heights, N.Y. New York: Plenum, p.85-103. 1972

[26] Homepage of Lemon library - http://lemon.cs.elte.hu/trac/lemon
[27] GNU Linear Programming Kit homepage -

https://www.gnu.org/software/glpk/

7

D. Discussions on the Caching Details
In the case of RLNC, one question is to set the size of the

Galois field. In our earlier work we used GF(28). This means
that for each packet we should attach a 1 byte coefficient, which
would result in large overhead. Given that there is no need to
encode the same packet multiple times (which would imply the
encoding of the coefficients, too) we can apply the workaround
proposed in [23]. It suffices to embed only the seed to be used
to generate the series of random coefficients. Additionally we
have to take care to use the same pseudo random number
generator at each node. This trick allows us to reduce the
coefficient related overhead to a mere four bytes, and this value
remains constant, whatever the number of encoded segments
might be.

In our model we did not include the effect of the distance
between the wireless source and destination, although in some
wireless technologies this might change the coverage area of
the source. Also we did not consider the possibility of
overhearing [24] (which might be considered as an implicit
multicast packet distribution) that would further increase the
efficiency of our proposal.

Note that when we minimize the number of caches we might
gain a collateral advantage. Because the cache will operate at
higher loads, it will be more efficient, since it avoids idle
periods (in terms of data transfer), under which it still has to
keep its wireless interface active, waiting for newer requests.
Therefore from p.o.v. of green networking the first optimization
problem corresponds to the maximization of a naïve green
networking model. Nevertheless, the details of this relation
should be further investigated (e.g., the effect of the receiver’s
distance from the source).

VI. CONCLUSION
In crowded events several scenarios are possible where

streaming media based services are required. Due to their high
bandwidth demand, these applications heavily stress the local
access networks. In such cases any extra service results in
dramatical QoS degradation. One possibility to support such
services is to offload the access network by local, distributed
caching mechanisms. We have proposed such a solution and
built a model to investigate the behavior of our proposal. We
found that it is more advantageous than a simple distributed
caching solution and discussed the particularities of the
proposed scenarios.

Our proposal allows the design and deployment of added
value services for future large events at lower infrastructure
costs. In our future work we plan to investigate the integration
of caching and peer-to-peer mechanisms for the real time
streaming media distribution, expecting that the application
supporting near real-time services brings further advantages to
the service providers.

ACKNOWLEDGMENT
Csaba Simon’s research work was supported by the

European Union and the State of Hungary, co-financed by the
European Social Fund in the framework of TÁMOP 4.2.4.A/1-
11-1-2012-0001 National Program of Excellence (NKP). The
authors thank their colleagues Krisztián Németh and Attila

Kőrösi for assistance in ILP modeling and simulation.

REFERENCES
[1] Cs. Simon, "In-network caching of media streams in access networks", (in

Hungarian), National Program for Excellence (NKP) Newsletter, pp. 4.,
June 2014

[2] Cs. Simon, “Real-time Streaming Support in Crowds”, EIT ICTLabs
Partner Event – Future Networking Solution Workshop, April 2014

[3] Wi-Fi Alliance, “Wi-Fi Direct” - available from: http://www.wi-
fi.org/discover-and-learn/wi-fi-direct

[4] Qualcomm White Paper, “LTE Direct Overview”,
http://www.qualcomm.com/media/documents/lte-direct-overview, July,
2013.

[5] R. Koetter, M. Medard, “An algebraic approach to network coding”, IEEE
Trans. on Networking, October 2003

[6] Li B, et al., “Random network coding in peer-to-peer networks: From
theory to practice”, 2011

[7] Gajic B, Riihijrvi J and Mhnen P., “Performance evaluation of network
coding: Effects of topology and network traffic for linear and xor coding”,
Journal of Communication, vol. 4(11), pp. 885-893, 2009

[8] S. Chachulski and S. Katti, “Trading structure for randomness in wireless
opportunistic routing”, in Proc. of ACM SIGCOMM 2007

[9] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “The importance
of being opportunistic: Practical network coding for wireless
environments”, in Proc. 43rd Annual Allerton Conference on
Communication, Control, and Computing, 2005

[10] Gkantsidis, Ch., and Pablo R., "Network coding for large scale content
distribution.", in Proc. of IEEE INFOCOM 2005. Vol. 4. IEEE, 2005

[11] D. Traskov, Lenz, J., Ratnakar, N. and Médard, M., “Asynchronous
Network Coded Multicast”, in Proc. of ICC Communication Theory
Symposium, 2010

[12] X. Zhang, G. Neglia, J. Kurose, “Network Coding in Disruption Tolerant
Networks”, Network Coding: Fundamentals and Applications Elsevier
Science (Ed.) 2011

[13] Zs. Zalatnay, Cs. Simon, M. Maliosz, B. Terza, "Managing streaming
services in a distributed testbed", (accepted for publication) MACRO
2015, March 2015

[14] Li, B., Wang, Z., Liu, J., & Zhu, W., “Two decades of internet video
streaming: A retrospective view”, ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP), 9(1s), 33.,
2013

[15] G. Szabo and B. A. Huberman, “Predicting the popularity of online
content,” Communications of the ACM, vol. 53, no. 8, pp. 80–88, 2010

[16] Jaleel, A., Theobald, K. B., Steely Jr, S. C., & Emer, J., “High
performance cache replacement using re-reference interval prediction
(RRIP)”, In Proc. of ACM SIGARCH Computer Architecture News, Vol.
38, No. 3, pp. 60-71, 2010

[17] Cs. Simon, M. Markosz, B. Baranyai, “Network based caching for near
real-time streaming video”, (to appear in) Acta Universitatis Sapiantiae –
Electrical and Mechanical Engineering, 1/2014.

[18] U. Feige, “A threshold of ln n for approximating set cover”, J. Assoc.
Comput. Mach., 45:634–652, 1998

[19] C. Lund and M. Yannakakis, “On the hardness of approximating
minimization problems”, J. Assoc. Comput. Mach., 41(5):960–981, 1994

[20] Har-Peled, S., Lee, M.,“Weighted geometric set cover problems
revisited”, Journal of Computational Geometry, 3(1), 65-85., 2012

[21] Hei, X., Liang, C., Liang, J., Liu, Y., & Ross, K. W., “A measurement
study of a large-scale P2P IPTV system”, IEEE Transactions on
Multimedia, 9(8), pp. 1672-1687., 2007

[22] Silverston, T., Fourmaux, O., “ Measuring P2P IPTV Systems”, In
Proceedings of NOSSDAV (Vol. 7)., 2007

[23] Liu, Z., Wu, C., Li, B., Zhao, S., “UUSee: large-scale operational on-
demand streaming with random network coding”, IEEE INFOCOM,
2010 (pp. 1-9). 2010

[24] D.E. Lucani, M. Médard, M. Stojanovic, “Systematic network coding for
time-division duplexing”, in Proc. IEEE Symposium on Information
Theory Proceedings – ISIT, 2010

[25] Karp R. M., “Reducibility Among Combinatorial Problems”, in Proc.
Sympos. Complexity of Computer Computations, IBM Thomas J. Watson
Res. Center, Yorktown Heights, N.Y. New York: Plenum, p.85-103. 1972

[26] Homepage of Lemon library - http://lemon.cs.elte.hu/trac/lemon
[27] GNU Linear Programming Kit homepage -

https://www.gnu.org/software/glpk/

8

[28] GUROBI Optimization Libraries homepage - http://www.gurobi.com/

Csaba Simon received his PhD degree
in computer science in the field of
infocommunication systems at Budapest
University of Technology and
Economics (BME), Hungary.
He is an assistant professor in the High-
Speed Networks Laboratory at the
Department of Telecommunication and
Media Informatics, BME. His research
interests include QoS of IP networks, IP

network architectures, network and service management. He
participated in numerous national and international projects in
the fields of network resource management, mobility
management and smart content delivery.
He is a member of Scientific Association for
Infocommunications, Hungary (HTE).

Markosz Maliosz received his MSc
(1998) and PhD (2006) degrees in
computer science in the field of
infocommunication systems at Budapest
University of Technology and Economics
(BME), Hungary.
He is an assistant professor in the High-
Speed Networks Laboratory at the
Department of Telecommunication and
Media Informatics, BME. His research

interests include virtual, cloud and sensor networking along
with optimization techniques. He participated in numerous
national and international projects in the fields of network
resource management, multimedia and smart content delivery.
He is a member of Scientific Association for
Infocommunications, Hungary (HTE).

Network Coding Based Caching for
Near Real-Time Streaming Media

MARCH 2015 • VOLUME VII • NUMBER 114

INFOCOMMUNICATIONS JOURNALINFOCOMMUNICATIONS JOURNAL

14 MARCH 2015 • VOLUME VII • NUMBER 1

Network Coding Based Caching for
Near Real-Time Streaming Media

Call for Papers
Prospective authors are invited to submit original research pa-
pers for publication in the upcoming issues of our Infocom-
munications Journal.

Topics of interests include the following areas:
• Data and network security
• Digital broadcasting
• Infocommunication services
• Internet technologies and applications
• Media informatics
• Multimedia systems
• Optical communications
• Society-related issues
• Space communications
• Telecommunication software
• Telecom. economy and regulation
• Testbeds and research infrastructures
• Wireless and mobile communications

Theoretical and experimentation research results achieved with-
in the framework of European ICT projects are particularly
welcome. From time to time we publish special issues and fea-
ture topics so please follow the announcements. Propo-sals for
new special issues and feature topics are welcome.

Our journal is currently published quarterly and the edi-
tors try to keep the review and decision process as short as pos-
sible to ensure a timely publication of the paper, if accepted.
As for manuscript preparation and submission, please follow
the guidelines published on our website

http://www.infocommunications.hu/for_our_authors.

Authors are requested to send their manuscripts via electronic
mail (preferably) or on a CD by regular mail to the Editor-in-
Chief:

Csaba A. Szabo
Dept. of Networked Systems and Services,
Budapest University of Technology and Economics
2 Magyar Tudosok krt., Budapest 1117 Hungary
e-mail: szabo@hit.bme.hu

Call for Proposals of
Special Issues

Infocommunications Journal welcomes proposals for Special
Issues – collections of papers dedicated to a particular topic of
interest for the readers of the journal.

A Special Issue can be based on a recent high quality work-
shop or conference or papers can be collected from open call.
Invited papers can be part of the special issue as well.

A Special Issue can fill in a whole issue, in which case the
number of papers is expected to be 8 to 10, or it can be a Mini –
Special Issue. In the latter case, at least 3, preferably 4 papers
are required.

Proposals for special issues should include:
– contact information

(name, e-mail, title, affiliation and address);
– resume(s) of the proposer(s), with a representative list

of recent publications and related experience
(Editorial Board memberships, Guest Editorships,
or roles in relevant conferences’ program committees);

– the proposed title for the special issue;
– the way the special issue will be compiled

(contributions solicited from a technical event,
or to be collected from call for this special issue;

– intent to include invited papers should be also indicated,
if possible with the names of professionals who are
planned to be invited;

– scope and motivation and description of
the special issue;

– guest editors (if different from the proposers) with
detailed contact information and resumes.

Proposals should be sent to the Editor-in-Chief:
Csaba A. Szabo
Dept. of Networked Systems and Services,
Budapest University of Technology and Economics
2 Magyar Tudosok krt., Budapest 1117 Hungary
e-mail: szabo@hit.bme.hu

InfocomJ2015_1 2015.03.18 11:12 Page 14

8

[28] GUROBI Optimization Libraries homepage - http://www.gurobi.com/

Csaba Simon received his PhD degree
in computer science in the field of
infocommunication systems at Budapest
University of Technology and
Economics (BME), Hungary.
He is an assistant professor in the High-
Speed Networks Laboratory at the
Department of Telecommunication and
Media Informatics, BME. His research
interests include QoS of IP networks, IP

network architectures, network and service management. He
participated in numerous national and international projects in
the fields of network resource management, mobility
management and smart content delivery.
He is a member of Scientific Association for
Infocommunications, Hungary (HTE).

Markosz Maliosz received his MSc
(1998) and PhD (2006) degrees in
computer science in the field of
infocommunication systems at Budapest
University of Technology and Economics
(BME), Hungary.
He is an assistant professor in the High-
Speed Networks Laboratory at the
Department of Telecommunication and
Media Informatics, BME. His research

interests include virtual, cloud and sensor networking along
with optimization techniques. He participated in numerous
national and international projects in the fields of network
resource management, multimedia and smart content delivery.
He is a member of Scientific Association for
Infocommunications, Hungary (HTE).

1

New Key Agreement Techniques for Sensor
Networks

Abhishek Parakh and Subhash Kak

Abstract—We propose two computationally efficient key agree-
ment algorithms. The schemes are ideally suited for computa-
tionally constrained environments such as sensor networks. The
first proposed technique is general and uses matrix factorization.
We provide constructive algorithms to implement the scheme.
The second algorithm uses commutative property of matrices to
distribute keys and provides two different keys per node pair.
Both the algorithms are practical in terms of implementation,
security provided and linear in computational complexity.

Index Terms—Key distribution, sensor networks, matrix fac-
torization

I. INTRODUCTION

Sensor networks are becoming increasingly popular for
applications such as patient health monitoring, detection of
border crossings, bridge stress monitoring, signal relay points
in battlefields and so on. In many of these applications
sensors need to communicate securely to either relay data to
base station or perform distributed computations. Therefore,
encryption/decryption keys need to be distributed among the
sensors.

Key distribution in sensor is particularly challenging be-
cause sensors have very limited computational power and
transmission ranges. While in recent years the memory capac-
ity for sensors has grown, they still cannot hold large number
of keys for pair-wise communication. The key distribution
challenge is further complicated by the fact that most sensors
are deployed at random. As a result, we do not know a priori
which sensors are going to be neighbors of other sensors that
is within communication range of each other.

In general, for any key distribution scheme two techniques
can be adopted - either install each node with pairwise
symmetric keys before deployment or let sensors perform a
public key exchange.

Installing pairwise symmetric keys is not a practical solution
as it requires large storage capacity and does not allow for
dynamic networking where nodes leave and new nodes join.
This may happen because old sensors stop working and need
to be replaced with new ones or the batteries run out.

If we consider a network to have N nodes, then a pair-wise
symmetric key distribution would require each node to store
N − 1 unique keys (because of lack of a priori knowledge
of sensor’s neighbors). If AES is used as the encryption
algorithm, this would require (N − 1) · 128 bits of storage

Manuscript received December 10, 2014, revised March 10, 2015
A. Parakh is with the Nebraska University Center for Informa-

tion Assurance, University of Nebraska, Omaha, NE 68182, e-mail:
aparakh@unomaha.edu

S. Kak is with the School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK 74078

as it is typical to have 10,000 sensors deployed in a network.
If we allow for multiple sensor to use the same key, then we
can reduce the number of keys installed on a given sensor, but
that also means that once deployed there is a chance a sensor
may not share a key with some of its neighbors. Therefore, if
a sensor wished to communicate with a neighbor with which
it does not share a key (or is out of its communication range),
then link encryption (hop-by-hop) is used. In link encryption,
assume sensor a wants to communicate with sensor d with
which it does not share a key (or d is out of its communication
range). If a shares a key with node b which in turn shares a key
with node d, then a can send b a message such as Ekab

(m);
where kab is a key shared between a and b. Node b upon
receiving this message, first decrypts it and then re-encrypts it
with key kbd that it shares with node d and send it to d. This
latter approach requires multiple encryption/decryptions along
the way as well as a path finding and routing algorithm.

Eschenauer and Gligor [1] introduced the above approach
where they assumed limited memory capacity and limited
communication range for sensor networks. Further, they as-
sumed random deployment of sensors, i.e. a sensor’s neigh-
bors were not known before deployment. As a result, after
deployment the sensors performed a neighbor discovery in
which they determined who their neighbors are and with which
one of them they share keys. Then the sensors performed
a path discovery to those sensors with which they do not
share keys. Once a path was discovered, messages were sent
using link-encryption. Although, the scheme proposed in [1]
is very general and applicable to most scenarios, in practise
one does have some knowledge of sensor neighborhood before
deployment. Hence, EG requires the storage of larger number
of keys on each sensor than may be required in a given
scenario. Further, the path finding and routing protocols in a
distributed sensor network are not trivial, especially when the
number of neighbors one shares keys with are only a fraction
of the number of neighbors actually in communication range.

Du et al. [2] assume deployment knowledge to reduce
the number of keys stored per node. A gaussian probability
distribution function is assumed with every sensor having a
high probability of being deployed at a specific coordinate in
a grid. However, such a scheme is not applicable to mobile
nodes. Chan et al. [3] proposed a q-composite scheme that is
similar to the EG scheme but requires that the nodes share q
keys from the key ring instead of just one key and then final
key to be used for encryption is computed as a function of
these q shared keys.

In [4] it is assumed that mobile sensors handle the load
of key distribution while static sensors only require minimal
resources for key management. A bootstrapping technique is

