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Abstract— During crowded events streaming services generate 

high demands in the wireless access networks. In this paper we 
present a solution to offload the access network in case of such a 
streaming service. We detail the streaming service itself, and our 
offload solution based on local caching and network coding. We 
introduce a model that allows us to analyze our proposal, we 
implement it in a simulation environment and assess it. Finally we 
discuss the consequences of several design decisions we made 
during our work.  
 

Index Terms—multimedia applications, network 
communication, network coding, caching  
 

I. INTRODUCTION 

The Internet traffic is dominated by streaming multimedia 
content as users demand higher quality video and ubiquitously 
available services. With the advent of high performance smart 
handheld devices the users expect that their usual services 
received on their desktops are available on these smart devices, 
too. Thus users can access advanced services from new places 
where they start to use their devices on regular basis. On turn, 
these new situations generate new demands: once the users get 
used to the new scenario, they start to require new, adapted 
services.  

A typical scenario is a crowded event, where even a few years 
ago users could not use their mobile devices due to network 
congestion. E.g., it was common that during New Year’s Eve 
calls were blocked and only SMS-es went through the 
overloaded networks. Similarly, sporting events at remote areas 
required a careful design and temporary increase in mobile 
access capacity to serve the increased demand. This motivated 
us to offload access networks during crowded events for a new 
streaming service, specific to this environment. 

Users attend crowded events for the live experience, which 
combines the feeling of “being there” with the potential of rich 
social interactions among fellow users with similar interests. 
Nevertheless, until recently the participation at such events 
forced the attendants to stop following the online (e.g., live 
commentaries, additional info) and broadcasted (e.g., TV) 
content. The solution that offers both experiences, live 
attendance and online information stream, comes with the 
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introduction of the so called “second screen”.  
Second screen originally refers to the use of an online device 

(e.g., smartphone, iPad) that doubles the screen of a device 
offering “linear” program (e.g., TV, projector). We extend the 
meaning of this term, calling second screen any online device 
that offers additional content associated with a live event, 
attended by the user of the device. Current access networks are 
hard pressed to provide the required QoS, because attendees of 
live events continue using their smart devices as second screens 
(to consume more and more multimedia content). In this 
environment, shortage of available capacity seems to perpetuate 
at least until the mid-2020s, when 5G technologies will mature. 
The focus of the operators is on assuring the basic service, not 
to mention any new service with additional bandwidth demand. 
Therefore offloading the wireless access currently is very 
important for the operators, and it will be so for the coming 
decade. 

The data to be distributed in such an environment is not only 
the real-time, live multimedia stream, but also extra, add-on 
content, which has less strict delay constraints, and is related to 
recent events (e.g., replays, statistical analysis of the game, 
etc.). Still, their importance is higher soon after the original 
event happened (e.g., a goal right after it was scored), that is 
why we call them near real-time events. We propose a novel 
streaming service specific to this environment that can be 
offered on top of classical streaming media services, consisting 
of replayed live scenes. At the core of our solution to offload 
the access network delivering this service is the distributed local 
caching of the data, made reliable and versatile by the 
introduction of network coding techniques. To best of our 
knowledge, network coding was not proposed before to support 
such caching solutions (also see section III-C). The motivation 
behind such novel add-on services are not only recognized by 
recent research projects [1], but also attract major players from 
the streaming live event distribution industry [2]. 

In the next section we present related work that we relied on 
in our research. Then we present several scenario variants for 
our proposal and introduce the novel near real-time data 
delivering service that can be offered on top of classical 
streaming media services. In section IV we present a model that 
will allow us to analyze its behavior, and we evaluate it in 
section V. Finally we conclude our paper. 
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II. COMMUNICATION IN THE LOCAL WIRELESS DOMAIN 
The support of new service types in such a challenging 

environment as crowded spaces needs a complex approach, 
which relies on results from several research areas of 
communications. In this section we briefly introduce the main 
aspects that influence the most our proposal and are referenced 
in later Sections during the definition of the model of our 
proposal. Specifically, the wireless technologies define the 
limitations of direct inter-node communication, while network 
coding ensures the flexibility and robustness of local data 
distribution.  

A. Offloading the Local Wireless Access 
Smartphones have several wireless interfaces that can be 

used to achieve direct communication. The natural choice is 
WiFi, with its adhoc variant. WiFi adhoc was very popular 
among researchers in the laptop era. Lots of mobile ad hoc 
protocols (MANET) were prototyped and investigated using 
such connections. Unfortunately this technology is not 
supported anymore by the vendors, although some Android 
smartphone models still can be tweaked to work in adhoc mode. 
The main advantage of the ad hoc mode is that it is very flexible. 

Officially the replacement technology of the WiFi ad hoc 
mode is the WiFi Direct [3]. Nevertheless, the latter comes with 
some limitations, but these do not affect our scenarios. Both 
technologies have a different problem, too: the interfaces can 
work only in one WiFi mode only. Nevertheless, for modelling 
purposes we can use the WiFi Direct interface, as most of the 
community is familiar with this technology. Note that in real 
life deployments the local networking connection might be one 
of the UMTS/LTE technologies (e.g., using femtocells). Then 
the WiFi interface of the smartphone is available to support our 
service. 

A different option might be the new variants of Bluetooth. 
The advantage is that typically this interface is not used, but it 
has lower capacity and it is harder to set up a link. 

Finally we have to mention the promising new LTE variant, 
the LTE Direct [4] (or LTE D2D), which offers direct 
connectivity in a non-WiFi band, but it will cost more, as 
operates in a licensed band. 

B. Network Coding  
Network coding is a technique that, in contrast to channel 

coding, “allows and encourages the mixing of data at 
intermediate network nodes”, instead of just encoding messages 
in a redundant way, allowing the network to have a maximum 
flow of information achieving a larger throughput [5]. With 
network coding, information transmitted from a source can be 
received by the receivers, but it can also be inferred or decoded. 
Intermediate nodes are still able to forward information but if it 
is the case, the node can combine different received streams of 
information into just one and transmit it to its outgoing nodes.  

The fixed version of network coding uses simpler coding 
techniques (e.g., bitwise XOR-ing the packets of the involved 
stream(s)), making the flow always encodable and decodable, 
however this advantage comes with the downside of having to 
define the structure and the number of participants of the entire 

network previously. There is an alternative that follows a 
random behavior [6], where nodes assign coefficients to each 
packet randomly and according to the finite field used, there is 
a probability of these coefficients being decodable. Using 
random network coding all nodes are independent and 
randomized, without the need of any knowledge of the rest of 
the network. Intermediate nodes build a linear combination of 
incoming messages that then transmit on each on their outgoing 
links. Differently than the fixed method (e.g., bitwise XOR-
ing), this combination uses independently and randomly chosen 
coefficients over a finite field. By allowing this kind of local 
encoding under a sufficiently large Galois field (i.e. finite field), 
the received coded blocks are decodable with a very high 
probability at the sink peers, on the order of the inverse of the 
size of the finite field [7]. 
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wireless medium and combines available data chunks with ones 
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packets must arrive before the playout of that particular 
encoded sequence can start. Any encoded packet belonging to 
a generation is useful (until we receive enough of them), the 
packets are not ordered, which simplifies the timing at the 
receiver side. 

Network Coding was mostly proposed to be used in 
information distribution [10], multicast [11] and data averaging 
[12], which assures the usage in distributed sensor network data 
collection as well. 

III. CACHING OF STREAMING MEDIA AT THE END NODES 

A. Crowded Event Scenarios  
We have identified three different scenarios for crowded 

events. All three scenarios offer a solid business model to build 
on and attract dedicated users who have the motivation to be 
actively involved in the content consumption process. E.g., they 
are interested in the details of the performers, want to know 
previous stories about the protagonists, etc. This offers a good 
audience for our proposed service.  

The first scenario is the open air city festival, where attendees 
have access to multiple scenes and several selling and catering 
locations within a geographically limited area. Note that such 
events might become very congested, especially around sites of 
interest. We will refer to this scenario as the “festival” one. 

A similarly crowded scenario is offered by the stadiums 
(“stadium” scenario). The main difference is that in the 
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stadiums the participants are bound to their seats and typically 
these events last for only a few hours. Therefore the people are 
not moving as much as in the previous scenario.  

Combination of the previous two scenarios are the open air 
sporting events (bicycle tour, triathlon, etc). In such scenarios 
the attendance is scattered along the track, but usually they form 
small groups of people at interesting or spectacular portions of 
the track. Due to the largest such cycling event, (Tour de 
France), we will refer to this scenario as the “Tour” scenario. 

Note that we expect different user behaviors and topologies 
in each of these scenarios, as detailed later in sub-section V-C. 

B. Streaming Media Services 
The traffic volume of streaming media had exceeded that of 

any other traffic type, including peer-to-peer or web access and 
researchers tried to reduce its bandwidth demand by various 
methods, including caching. There is a vast available literature 
in this field. In [17] we highlighted the most important ones. 
The reader interested in further details of streaming video 
caching is directed to a thorough overview of this field [14]. 

Our proposal is an additional service to extend the original 
streaming service. Currently replays are broadcasted within the 
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering 
replays close to the moment in time when it originally happened 
(e.g., 100 minutes), which happens in a near real time fashion 
(in the worst case). In lots of cases the users want to re-watch 
the missed content, too. But in such cases only some special 
moments are of high interest, as the user then wants to resume 
and follow the original live content. Therefore recording the 
whole stream and playing it with a constant lag is not an option. 
In this case it is better to cache such short sequences from the 
live stream and make it available for instant replay. This 
caching service is detailed in the next sub-section. 

C. Caching of the Replayed Content 
In this section we introduce our solution for near real-time 

media streaming that also offloads the wireless access. 
The load in the wireless access is decreased by the use of 

network coding and stretching the lifetime of the network 
encoded packets somewhere in the network distributed in end 
devices or well-placed points in the distribution/access domain. 
The cache distribution is implemented primarily on the user's 
devices. 

This scenario is depicted in Fig. 1. The original live 
streaming media is distributed by the APi Access Points. The 
nodes receiving the data encode it and cache it locally (dark 
gray stars –S1, …). Any time a node (light gray star) wants a 
replay, they will have the data chunks readily available in their 
local mesh network.  

As already mentioned, the nodes should organize themselves 
to find the caches, this can be done using techniques used by 
peer-to-peer applications [13]. The advantage is that the 
neighbor list maintenance can be supported by the APs with 
limited extra costs in terms of bandwidth usage (e.g., 
neighbouring APs can exchange the list of connected devices 
that act as caches and broadcast that list periodically for all).  

 
Fig. 1.  Media streaming with caching 

Also note that the direct node-to-node control traffic is not 
affecting directly the AP (for details also see sub-section V-A). 
In our scenario each node is attached to one AP and additionally 
it can communicate with several fellow nodes from its. We do 
not analyze the technological details, but two possible 
alternatives for such local communications to be largely 
adopted in the coming years are the WiFi Direct [3] and LTE 
Direct [4].  

In our solution we use additional wireless sessions to receive 
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions; 
some of these collisions are hidden by lower layers, others will 
result in packet losses. At higher layers (networking and above) 
these packet losses are perceived as a lower bandwidth. We 
measured the effect of this parallel communication, as 
described in section 5.1 and we used the results in our 
simulations. Thus during the evaluation of our model we take 
into account the impact of the addition of cache-to-node 
sessions through the modified data transfer rates. 

IV. MODELING THE CACHE BASED STREAMING SERVICE 

A. Network Coding Based Caching 
From our model’s perspective the important thing is to have 

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account 
that a given node cannot communicate directly with every 
neighbor, the degree of connectivity is upper bounded. 
Currently the most used file distribution is BitTorrent, and the 
most used p2p streaming application (SopCast) is based on the 
same principles [21]. In BitTorrent only 5 slots are available for 
uploading data. The goal of this limitation is to protect the 
uploaders (i.e., the cache) from overload. 

We consider that the potential coverage areas of the APs will 
be much larger than the area they accept connection requests 
from. Therefore, if there is a node somewhere at the border of 
two (or more) neighbouring AP coverage areas, then it can be 
identified by the respective APs. Based on that they can provide 
this node with the necessary information about cached content 
within its reach (but it will not “spam” this node with the list of 
far distant caches). The request statistics for a given replay or 
generally, for this type of service and similar statistics specific 
to streaming services can be computed in the background 
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II. COMMUNICATION IN THE LOCAL WIRELESS DOMAIN 
The support of new service types in such a challenging 

environment as crowded spaces needs a complex approach, 
which relies on results from several research areas of 
communications. In this section we briefly introduce the main 
aspects that influence the most our proposal and are referenced 
in later Sections during the definition of the model of our 
proposal. Specifically, the wireless technologies define the 
limitations of direct inter-node communication, while network 
coding ensures the flexibility and robustness of local data 
distribution.  

A. Offloading the Local Wireless Access 
Smartphones have several wireless interfaces that can be 

used to achieve direct communication. The natural choice is 
WiFi, with its adhoc variant. WiFi adhoc was very popular 
among researchers in the laptop era. Lots of mobile ad hoc 
protocols (MANET) were prototyped and investigated using 
such connections. Unfortunately this technology is not 
supported anymore by the vendors, although some Android 
smartphone models still can be tweaked to work in adhoc mode. 
The main advantage of the ad hoc mode is that it is very flexible. 

Officially the replacement technology of the WiFi ad hoc 
mode is the WiFi Direct [3]. Nevertheless, the latter comes with 
some limitations, but these do not affect our scenarios. Both 
technologies have a different problem, too: the interfaces can 
work only in one WiFi mode only. Nevertheless, for modelling 
purposes we can use the WiFi Direct interface, as most of the 
community is familiar with this technology. Note that in real 
life deployments the local networking connection might be one 
of the UMTS/LTE technologies (e.g., using femtocells). Then 
the WiFi interface of the smartphone is available to support our 
service. 

A different option might be the new variants of Bluetooth. 
The advantage is that typically this interface is not used, but it 
has lower capacity and it is harder to set up a link. 

Finally we have to mention the promising new LTE variant, 
the LTE Direct [4] (or LTE D2D), which offers direct 
connectivity in a non-WiFi band, but it will cost more, as 
operates in a licensed band. 

B. Network Coding  
Network coding is a technique that, in contrast to channel 

coding, “allows and encourages the mixing of data at 
intermediate network nodes”, instead of just encoding messages 
in a redundant way, allowing the network to have a maximum 
flow of information achieving a larger throughput [5]. With 
network coding, information transmitted from a source can be 
received by the receivers, but it can also be inferred or decoded. 
Intermediate nodes are still able to forward information but if it 
is the case, the node can combine different received streams of 
information into just one and transmit it to its outgoing nodes.  

The fixed version of network coding uses simpler coding 
techniques (e.g., bitwise XOR-ing the packets of the involved 
stream(s)), making the flow always encodable and decodable, 
however this advantage comes with the downside of having to 
define the structure and the number of participants of the entire 

network previously. There is an alternative that follows a 
random behavior [6], where nodes assign coefficients to each 
packet randomly and according to the finite field used, there is 
a probability of these coefficients being decodable. Using 
random network coding all nodes are independent and 
randomized, without the need of any knowledge of the rest of 
the network. Intermediate nodes build a linear combination of 
incoming messages that then transmit on each on their outgoing 
links. Differently than the fixed method (e.g., bitwise XOR-
ing), this combination uses independently and randomly chosen 
coefficients over a finite field. By allowing this kind of local 
encoding under a sufficiently large Galois field (i.e. finite field), 
the received coded blocks are decodable with a very high 
probability at the sink peers, on the order of the inverse of the 
size of the finite field [7]. 

The first practical wireless network coding scheme designed 
to deal with inter-flow traffic is also based on Random Linear 
Network Coding (RLNC) [8]. It exploits the shared nature of 
wireless medium and combines available data chunks with ones 
overheard from neighbors to restore the original information. 
Although it significantly improves network throughput, it is 
limited to situations where multiple streams cross the same 
network segment. A different approach uses RLNC to encode 
data within the same flow [9]. This intra-flow network coding 
improves the performance of the network over wireless links. 

We divide the stream in generations. Only packets from a 
generation are linearly combined (encoded), thus at the 
receiving end enough linearly independent packets from a 
generation should be collected to be able to decode the content. 
For the streaming service it acts as a time window, because all 
packets must arrive before the playout of that particular 
encoded sequence can start. Any encoded packet belonging to 
a generation is useful (until we receive enough of them), the 
packets are not ordered, which simplifies the timing at the 
receiver side. 

Network Coding was mostly proposed to be used in 
information distribution [10], multicast [11] and data averaging 
[12], which assures the usage in distributed sensor network data 
collection as well. 

III. CACHING OF STREAMING MEDIA AT THE END NODES 

A. Crowded Event Scenarios  
We have identified three different scenarios for crowded 

events. All three scenarios offer a solid business model to build 
on and attract dedicated users who have the motivation to be 
actively involved in the content consumption process. E.g., they 
are interested in the details of the performers, want to know 
previous stories about the protagonists, etc. This offers a good 
audience for our proposed service.  

The first scenario is the open air city festival, where attendees 
have access to multiple scenes and several selling and catering 
locations within a geographically limited area. Note that such 
events might become very congested, especially around sites of 
interest. We will refer to this scenario as the “festival” one. 

A similarly crowded scenario is offered by the stadiums 
(“stadium” scenario). The main difference is that in the 
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stadiums the participants are bound to their seats and typically 
these events last for only a few hours. Therefore the people are 
not moving as much as in the previous scenario.  

Combination of the previous two scenarios are the open air 
sporting events (bicycle tour, triathlon, etc). In such scenarios 
the attendance is scattered along the track, but usually they form 
small groups of people at interesting or spectacular portions of 
the track. Due to the largest such cycling event, (Tour de 
France), we will refer to this scenario as the “Tour” scenario. 

Note that we expect different user behaviors and topologies 
in each of these scenarios, as detailed later in sub-section V-C. 

B. Streaming Media Services 
The traffic volume of streaming media had exceeded that of 

any other traffic type, including peer-to-peer or web access and 
researchers tried to reduce its bandwidth demand by various 
methods, including caching. There is a vast available literature 
in this field. In [17] we highlighted the most important ones. 
The reader interested in further details of streaming video 
caching is directed to a thorough overview of this field [14]. 

Our proposal is an additional service to extend the original 
streaming service. Currently replays are broadcasted within the 
original content, there is no possibility to watch them on-
demand. In this paper we focus only on the service offering 
replays close to the moment in time when it originally happened 
(e.g., 100 minutes), which happens in a near real time fashion 
(in the worst case). In lots of cases the users want to re-watch 
the missed content, too. But in such cases only some special 
moments are of high interest, as the user then wants to resume 
and follow the original live content. Therefore recording the 
whole stream and playing it with a constant lag is not an option. 
In this case it is better to cache such short sequences from the 
live stream and make it available for instant replay. This 
caching service is detailed in the next sub-section. 

C. Caching of the Replayed Content 
In this section we introduce our solution for near real-time 

media streaming that also offloads the wireless access. 
The load in the wireless access is decreased by the use of 

network coding and stretching the lifetime of the network 
encoded packets somewhere in the network distributed in end 
devices or well-placed points in the distribution/access domain. 
The cache distribution is implemented primarily on the user's 
devices. 

This scenario is depicted in Fig. 1. The original live 
streaming media is distributed by the APi Access Points. The 
nodes receiving the data encode it and cache it locally (dark 
gray stars –S1, …). Any time a node (light gray star) wants a 
replay, they will have the data chunks readily available in their 
local mesh network.  

As already mentioned, the nodes should organize themselves 
to find the caches, this can be done using techniques used by 
peer-to-peer applications [13]. The advantage is that the 
neighbor list maintenance can be supported by the APs with 
limited extra costs in terms of bandwidth usage (e.g., 
neighbouring APs can exchange the list of connected devices 
that act as caches and broadcast that list periodically for all).  

 
Fig. 1.  Media streaming with caching 

Also note that the direct node-to-node control traffic is not 
affecting directly the AP (for details also see sub-section V-A). 
In our scenario each node is attached to one AP and additionally 
it can communicate with several fellow nodes from its. We do 
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Direct [4].  

In our solution we use additional wireless sessions to receive 
the data from the caches, which run in parallel with the AP-to-
node sessions. This might increase the number of collisions; 
some of these collisions are hidden by lower layers, others will 
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these packet losses are perceived as a lower bandwidth. We 
measured the effect of this parallel communication, as 
described in section 5.1 and we used the results in our 
simulations. Thus during the evaluation of our model we take 
into account the impact of the addition of cache-to-node 
sessions through the modified data transfer rates. 

IV. MODELING THE CACHE BASED STREAMING SERVICE 

A. Network Coding Based Caching 
From our model’s perspective the important thing is to have 

a direct node-to-node communication in parallel with the AP-
to-node connection. However we also have to take into account 
that a given node cannot communicate directly with every 
neighbor, the degree of connectivity is upper bounded. 
Currently the most used file distribution is BitTorrent, and the 
most used p2p streaming application (SopCast) is based on the 
same principles [21]. In BitTorrent only 5 slots are available for 
uploading data. The goal of this limitation is to protect the 
uploaders (i.e., the cache) from overload. 

We consider that the potential coverage areas of the APs will 
be much larger than the area they accept connection requests 
from. Therefore, if there is a node somewhere at the border of 
two (or more) neighbouring AP coverage areas, then it can be 
identified by the respective APs. Based on that they can provide 
this node with the necessary information about cached content 
within its reach (but it will not “spam” this node with the list of 
far distant caches). The request statistics for a given replay or 
generally, for this type of service and similar statistics specific 
to streaming services can be computed in the background 
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 1,0ijx ∀𝑖𝑖, ∀𝑗𝑗              (16) 

iji hk , ∀𝑖𝑖, ∀𝑗𝑗             (17) 

We have (10), (11), (12) and (13), since conditions (1), (2), 
(5) and (8) are valid in this scenario, too. Eq. (13) shows the 
actually downloaded number of chunks for one node, vj should 
at least be equal with gw. If we select M sufficiently large (e.g., 

wgM  ), then eq. (14) states that downloads are possible 
only from selected caches. Eq. (15) says that the number of 
downloaded packets from a given cache is upper bounded by 
the content available at that cache.

V. EVALUATION OF THE MODEL

In this section we evaluate the proposed model and discuss 
the particularities of the proposed scenarios. 

A. Offloading the Wireless Access 
We evaluated the effect of the additional service on the 

original AP capacity. In this experiment we considered that the 
AP is using WiFi, while the nodes for their direct 
communication (i.e., cache access) use such technologies that 
uses the same frequency band (e.g., WiFi Direct or Bluetooth). 
We measured the impact of WiFi Direct on WiFi, when 5 to 20 
streaming devices are connected to the AP and we had pairs of 
nodes testing WiFi Direct connections with iPerf. We found 
that if the two technologies run on different channels, the total 
capacity is relatively less affected when larger number of direct 
node-to-node pairs communicate. We used this value in our 
simulator to represent the effect of direct node-to-node 
communication on overall network load (e.g., packet losses due 
to collisions). Note that the combination of LTE Direct with 
WiFi APs yields better results in the favor of the distributed 
caching solutions. The co-existence of LTE-based streaming 
and LTE Direct was not assessed in this paper, as we focus on 
local wireless technologies. In this sub-section we compare 
three scenarios. The original one is when the replays are sent by 
the AP, which increases the load linearly with the number of 
requests.  

The alternative solution is when caching is implemented 
without network coding. In this case the packets are sent 
directly from node to node, without directly consuming AP 
bandwidth. In this case there is a large control traffic overhead 
required to organize the download of the content. This case 
resembles the pure peer-to-peer streaming solutions, where 
control overhead in terms of number of packets is reported to 
vary between 5% and 20%, with the larger values for the 
leading streaming peer-to-peer application, SopCast [21][22]. 
The size of the control packets is one order of magnitude lower 
than the size of data packets, but p2p streaming applications 
contact many other peers, not only those they are downloading 
from. Note that based on our measurements, this 20% packet 
overhead is a conservative value, because at the beginning of 
downloads (starting to watch a replay) or when a seeder has to 
be replaced (churn event), the control traffic exceeds 2/3 of the 
total packet counts. As a consequence, we used a 15% overhead 

in terms of bandwidth (on the direct node to node links). In [21] 
they calculated with minimum 10% signalling overhead, 
SopCast having larger overheads. 

The third case is the proposed network coding based caching. 
For RLNC based distribution in [23] the authors calculated with 
5% overhead, but our scenario is simpler, because the 
infrastructure takes over some parts of the discovery and 
maintenance job and the peers are within direct layer 2 contact. 
Therefore we calculated with a minimal overhead (we used a 
3% value in our simulations), as the requester also does not have 
to deal with the uniqueness of the segments. 

The result of the evaluation is shown in Fig. 2, with linear 
trends fitted on all three data series. We simulated 50 requesting 
nodes the most, because a WiFi AP will not serve more than 
100 streams, and out of this maximum number of connected 
nodes only a fraction of them will access the cache at the same 
time. It can be seen that both distributed caching solutions 
significantly offload the network, and scales well with the 
growing replay demands. Also we can see that the proposed 
network coding based caching solution outperforms both 
alternatives. 

B. Optimization of the Caches 
We have built a simulator to test the scenarios given in 

section IV in the different network conditions. We applied the 
graph libraries of the lemon tool [26] and the glpk and gurobi 
public ILP solver tools [27][28]. We generated the connectivity 
matrix considering that the network nodes were uniformly 
distributed. We have generated several different networks and 
averaged the solutions to get the presented results. We limited 
the upload capacity to 5 units. 

The size of the encoded chunks should be less than the size 
of an UDP packet, somewhere around 1kB. The number of data 

chunks encoding the same generation (gw) should be of orders 
of tens, eventually few hundreds. 

These results give the theoretical bounds as a result. 
However, in practically feasible implementations, due to the 
distributed implementation, we can just approximate this result 
at the best. We have proposed heuristic algorithms for both 
optimization problems in [17], but in this paper we will analyse 
the ILP models only.

Because of the complexity of the problem, in order to allow 
the ILP solver to find the optimum, we used max. 100 nodes (N) 

Fig. 2.  Evaluation of AP offloading efficiency
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[15][16]. Note that caching nodes can also report the read 
statistics to their APs. The details of the practical 
implementation of such services (e.g., the description of a 
protocol implementing it) are out of the scope of this paper. In 
our model we consider that these data are available, and it can 
be obtained from the AP a given node is connected to.  

In our model the nodes that actually execute the network 
coding task are the same ones that work as caches. Due to the 
nature of RLNC we do not have to previously configure them. 
Therefore in our model we do not have to dedicate special 
attention to network coding aspects, nor to the selection process 
of the coding nodes. During the construction of our model we 
just had to focus on the caching aspects, the selection of the 
network coding nodes implicitly resulted from it. 

Time dependencies are also not addressed directly, because 
the focus is on collecting the packets of a generation. Once 
collected enough packets, the content is readily available, 
implicitly meaning that the timing of content distribution 
conforms to the requirement of the service. If this requires 
slightly more time, then it can be considered as a slightly longer 
buffering time, which will not affect the (near real-time) 
service, because it has less strict delay requirements then a real-
time one. 

In the simplest model we search for the number of caching 
nodes to serve those nodes that are attached to the same AP, but 
we do not limit the cache size. Note that this solution does not 
allow that a node attached to APi to request data from a caching 
node attached to APj. In order to deduce the minimum number 
of overall caching points in the network, we can formulate an 
Integer Linear Program (ILP), as presented in the following 
sub-section. Then, in section IV-C we refine our model, aiming 
to minimize the size of the cache, at the same time letting more 
nodes to step in as caches, and we formulate an ILP for this 
case, too. 

B. Minimizing the Number of Caching Nodes 
We have a set of {APi} Access Points, but for our model we 

should rather focus on the nodes. The nodes {v1, …, vN} and the 
direct links between them { eij } can be considered the vertices 
and the edges of a graph G. We define the connectivity matrix 
{aij}, where a matrix element is 1 if there is a direct connection 
between nodes i and j, 0 otherwise. Note that this can be 
obtained by recoding the original content locally with pseudo 
random coefficients.  

Our goal is to determine the minimal number of caching 
nodes, a subset of G. ci is the total capacity of the direct link 
from node i (we consider that the total incoming and outgoing 
capacities are equal). In order to decode the original content, we 
need at least a full generation of encoded packets (the size of a 
generation is noted with gw). We introduce two binary variables; 
xij denotes a direct link between nodes vi and vj, xij = 1 if vi sends 
the cached content to vj, xij = 0 otherwise. Similarly, ui = 1, if 
node i is a cache, ui = 0 otherwise.  

Our optimization problem is: 
minimize ∑ ui                 (1) 

subject to 

 i
j

ij cx      ∀𝑖𝑖                 (2) 

 j
i

ij cx      ∀𝑗𝑗                 (3) 

 w
i

ij gx   ∀𝑖𝑖, ∀𝑗𝑗               (4) 

 ijij ax     ∀𝑖𝑖 ∀𝑗𝑗                 (5) 

 iij ux     ∀𝑗𝑗                   (6) 

  1,0, iji xu    ∀𝑖𝑖, ∀𝑗𝑗             (7)-(8) 
 
Equations (2) and (3) ensure that the caches and the regular 

nodes cannot exceed their total link capacities. Equation (4) 
ensures that all demand is served. Equation (5) assures that xij 
can be greater than 0 only if there is a direct physical connection 
between the nodes and eq. (6) that xij is greater than 0 only if 
the connection is originating from a cache.  

The generic form of this kind of optimization problem is 
known as the geometric set cover problem, and has been 
continuously researched in the last decades. Based on the earlier 
research results it is hard to solve [18][19], and the most 
versions of the problem are still considered to be NP-hard [20]. 
Also, [25] states that 0-1 Integer Linear Programming (ILP) is 
NP-complete. 

C. Minimizing the Cache Size  
In the previous two sub-sections we analyzed the ways to 

minimize the number of caching nodes, but we did not restrict 
the size of the cache. In this subsection we try to minimize the 
size of the cache, but we do not restrict the number of caching 
nodes. Note that every node is a potential cache node, because 
every node plays the streaming content (we exclude those nodes 
that do not follow the video stream). Let us keep the same 
notations we introduced earlier in this section. We note the 
number of chunks stored at node i with ki, and the number of 
actually downloaded encoded chunks from i to j with hij . 

  Now the objective is to 
minimize ∑ ki                   (9) 

subject to 

 i
j

ij cx      ∀𝑖𝑖                 (10) 

 j
i

ij cx      ∀𝑗𝑗                (11) 

 ijij ax     ∀𝑖𝑖 ∀𝑗𝑗                (12) 

 w
i

ij gh     ∀𝑗𝑗               (13) 

 0 =< hij <= xij M     ∀𝑖𝑖, ∀𝑗𝑗            (14) 

 ki >= hij >= 0        ∀𝑖𝑖, ∀𝑗𝑗            (15) 
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versions of the problem are still considered to be NP-hard [20]. 
Also, [25] states that 0-1 Integer Linear Programming (ILP) is 
NP-complete. 

C. Minimizing the Cache Size  
In the previous two sub-sections we analyzed the ways to 

minimize the number of caching nodes, but we did not restrict 
the size of the cache. In this subsection we try to minimize the 
size of the cache, but we do not restrict the number of caching 
nodes. Note that every node is a potential cache node, because 
every node plays the streaming content (we exclude those nodes 
that do not follow the video stream). Let us keep the same 
notations we introduced earlier in this section. We note the 
number of chunks stored at node i with ki, and the number of 
actually downloaded encoded chunks from i to j with hij . 
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 1,0ijx ∀𝑖𝑖, ∀𝑗𝑗              (16) 

iji hk , ∀𝑖𝑖, ∀𝑗𝑗             (17) 

We have (10), (11), (12) and (13), since conditions (1), (2), 
(5) and (8) are valid in this scenario, too. Eq. (13) shows the 
actually downloaded number of chunks for one node, vj should 
at least be equal with gw. If we select M sufficiently large (e.g., 

wgM  ), then eq. (14) states that downloads are possible 
only from selected caches. Eq. (15) says that the number of 
downloaded packets from a given cache is upper bounded by 
the content available at that cache.

V. EVALUATION OF THE MODEL

In this section we evaluate the proposed model and discuss 
the particularities of the proposed scenarios. 

A. Offloading the Wireless Access 
We evaluated the effect of the additional service on the 

original AP capacity. In this experiment we considered that the 
AP is using WiFi, while the nodes for their direct 
communication (i.e., cache access) use such technologies that 
uses the same frequency band (e.g., WiFi Direct or Bluetooth). 
We measured the impact of WiFi Direct on WiFi, when 5 to 20 
streaming devices are connected to the AP and we had pairs of 
nodes testing WiFi Direct connections with iPerf. We found 
that if the two technologies run on different channels, the total 
capacity is relatively less affected when larger number of direct 
node-to-node pairs communicate. We used this value in our 
simulator to represent the effect of direct node-to-node 
communication on overall network load (e.g., packet losses due 
to collisions). Note that the combination of LTE Direct with 
WiFi APs yields better results in the favor of the distributed 
caching solutions. The co-existence of LTE-based streaming 
and LTE Direct was not assessed in this paper, as we focus on 
local wireless technologies. In this sub-section we compare 
three scenarios. The original one is when the replays are sent by 
the AP, which increases the load linearly with the number of 
requests.  

The alternative solution is when caching is implemented 
without network coding. In this case the packets are sent 
directly from node to node, without directly consuming AP 
bandwidth. In this case there is a large control traffic overhead 
required to organize the download of the content. This case 
resembles the pure peer-to-peer streaming solutions, where 
control overhead in terms of number of packets is reported to 
vary between 5% and 20%, with the larger values for the 
leading streaming peer-to-peer application, SopCast [21][22]. 
The size of the control packets is one order of magnitude lower 
than the size of data packets, but p2p streaming applications 
contact many other peers, not only those they are downloading 
from. Note that based on our measurements, this 20% packet 
overhead is a conservative value, because at the beginning of 
downloads (starting to watch a replay) or when a seeder has to 
be replaced (churn event), the control traffic exceeds 2/3 of the 
total packet counts. As a consequence, we used a 15% overhead 

in terms of bandwidth (on the direct node to node links). In [21] 
they calculated with minimum 10% signalling overhead, 
SopCast having larger overheads. 

The third case is the proposed network coding based caching. 
For RLNC based distribution in [23] the authors calculated with 
5% overhead, but our scenario is simpler, because the 
infrastructure takes over some parts of the discovery and 
maintenance job and the peers are within direct layer 2 contact. 
Therefore we calculated with a minimal overhead (we used a 
3% value in our simulations), as the requester also does not have 
to deal with the uniqueness of the segments. 

The result of the evaluation is shown in Fig. 2, with linear 
trends fitted on all three data series. We simulated 50 requesting 
nodes the most, because a WiFi AP will not serve more than 
100 streams, and out of this maximum number of connected 
nodes only a fraction of them will access the cache at the same 
time. It can be seen that both distributed caching solutions 
significantly offload the network, and scales well with the 
growing replay demands. Also we can see that the proposed 
network coding based caching solution outperforms both 
alternatives. 

B. Optimization of the Caches 
We have built a simulator to test the scenarios given in 

section IV in the different network conditions. We applied the 
graph libraries of the lemon tool [26] and the glpk and gurobi 
public ILP solver tools [27][28]. We generated the connectivity 
matrix considering that the network nodes were uniformly 
distributed. We have generated several different networks and 
averaged the solutions to get the presented results. We limited 
the upload capacity to 5 units. 

The size of the encoded chunks should be less than the size 
of an UDP packet, somewhere around 1kB. The number of data 

chunks encoding the same generation (gw) should be of orders 
of tens, eventually few hundreds. 

These results give the theoretical bounds as a result. 
However, in practically feasible implementations, due to the 
distributed implementation, we can just approximate this result 
at the best. We have proposed heuristic algorithms for both 
optimization problems in [17], but in this paper we will analyse 
the ILP models only.

Because of the complexity of the problem, in order to allow 
the ILP solver to find the optimum, we used max. 100 nodes (N) 

Fig. 2.  Evaluation of AP offloading efficiency
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[15][16]. Note that caching nodes can also report the read 
statistics to their APs. The details of the practical 
implementation of such services (e.g., the description of a 
protocol implementing it) are out of the scope of this paper. In 
our model we consider that these data are available, and it can 
be obtained from the AP a given node is connected to.  

In our model the nodes that actually execute the network 
coding task are the same ones that work as caches. Due to the 
nature of RLNC we do not have to previously configure them. 
Therefore in our model we do not have to dedicate special 
attention to network coding aspects, nor to the selection process 
of the coding nodes. During the construction of our model we 
just had to focus on the caching aspects, the selection of the 
network coding nodes implicitly resulted from it. 

Time dependencies are also not addressed directly, because 
the focus is on collecting the packets of a generation. Once 
collected enough packets, the content is readily available, 
implicitly meaning that the timing of content distribution 
conforms to the requirement of the service. If this requires 
slightly more time, then it can be considered as a slightly longer 
buffering time, which will not affect the (near real-time) 
service, because it has less strict delay requirements then a real-
time one. 

In the simplest model we search for the number of caching 
nodes to serve those nodes that are attached to the same AP, but 
we do not limit the cache size. Note that this solution does not 
allow that a node attached to APi to request data from a caching 
node attached to APj. In order to deduce the minimum number 
of overall caching points in the network, we can formulate an 
Integer Linear Program (ILP), as presented in the following 
sub-section. Then, in section IV-C we refine our model, aiming 
to minimize the size of the cache, at the same time letting more 
nodes to step in as caches, and we formulate an ILP for this 
case, too. 

B. Minimizing the Number of Caching Nodes 
We have a set of {APi} Access Points, but for our model we 

should rather focus on the nodes. The nodes {v1, …, vN} and the 
direct links between them { eij } can be considered the vertices 
and the edges of a graph G. We define the connectivity matrix 
{aij}, where a matrix element is 1 if there is a direct connection 
between nodes i and j, 0 otherwise. Note that this can be 
obtained by recoding the original content locally with pseudo 
random coefficients.  

Our goal is to determine the minimal number of caching 
nodes, a subset of G. ci is the total capacity of the direct link 
from node i (we consider that the total incoming and outgoing 
capacities are equal). In order to decode the original content, we 
need at least a full generation of encoded packets (the size of a 
generation is noted with gw). We introduce two binary variables; 
xij denotes a direct link between nodes vi and vj, xij = 1 if vi sends 
the cached content to vj, xij = 0 otherwise. Similarly, ui = 1, if 
node i is a cache, ui = 0 otherwise.  

Our optimization problem is: 
minimize ∑ ui                 (1) 

subject to 

 i
j

ij cx      ∀𝑖𝑖                 (2) 

 j
i

ij cx      ∀𝑗𝑗                 (3) 

 w
i

ij gx   ∀𝑖𝑖, ∀𝑗𝑗               (4) 

 ijij ax     ∀𝑖𝑖 ∀𝑗𝑗                 (5) 

 iij ux     ∀𝑗𝑗                   (6) 

  1,0, iji xu    ∀𝑖𝑖, ∀𝑗𝑗             (7)-(8) 
 
Equations (2) and (3) ensure that the caches and the regular 

nodes cannot exceed their total link capacities. Equation (4) 
ensures that all demand is served. Equation (5) assures that xij 
can be greater than 0 only if there is a direct physical connection 
between the nodes and eq. (6) that xij is greater than 0 only if 
the connection is originating from a cache.  

The generic form of this kind of optimization problem is 
known as the geometric set cover problem, and has been 
continuously researched in the last decades. Based on the earlier 
research results it is hard to solve [18][19], and the most 
versions of the problem are still considered to be NP-hard [20]. 
Also, [25] states that 0-1 Integer Linear Programming (ILP) is 
NP-complete. 

C. Minimizing the Cache Size  
In the previous two sub-sections we analyzed the ways to 

minimize the number of caching nodes, but we did not restrict 
the size of the cache. In this subsection we try to minimize the 
size of the cache, but we do not restrict the number of caching 
nodes. Note that every node is a potential cache node, because 
every node plays the streaming content (we exclude those nodes 
that do not follow the video stream). Let us keep the same 
notations we introduced earlier in this section. We note the 
number of chunks stored at node i with ki, and the number of 
actually downloaded encoded chunks from i to j with hij . 

  Now the objective is to 
minimize ∑ ki                   (9) 

subject to 

 i
j

ij cx      ∀𝑖𝑖                 (10) 

 j
i

ij cx      ∀𝑗𝑗                (11) 

 ijij ax     ∀𝑖𝑖 ∀𝑗𝑗                (12) 

 w
i

ij gh     ∀𝑗𝑗               (13) 

 0 =< hij <= xij M     ∀𝑖𝑖, ∀𝑗𝑗            (14) 

 ki >= hij >= 0        ∀𝑖𝑖, ∀𝑗𝑗            (15) 
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[15][16]. Note that caching nodes can also report the read 
statistics to their APs. The details of the practical 
implementation of such services (e.g., the description of a 
protocol implementing it) are out of the scope of this paper. In 
our model we consider that these data are available, and it can 
be obtained from the AP a given node is connected to.  

In our model the nodes that actually execute the network 
coding task are the same ones that work as caches. Due to the 
nature of RLNC we do not have to previously configure them. 
Therefore in our model we do not have to dedicate special 
attention to network coding aspects, nor to the selection process 
of the coding nodes. During the construction of our model we 
just had to focus on the caching aspects, the selection of the 
network coding nodes implicitly resulted from it. 

Time dependencies are also not addressed directly, because 
the focus is on collecting the packets of a generation. Once 
collected enough packets, the content is readily available, 
implicitly meaning that the timing of content distribution 
conforms to the requirement of the service. If this requires 
slightly more time, then it can be considered as a slightly longer 
buffering time, which will not affect the (near real-time) 
service, because it has less strict delay requirements then a real-
time one. 

In the simplest model we search for the number of caching 
nodes to serve those nodes that are attached to the same AP, but 
we do not limit the cache size. Note that this solution does not 
allow that a node attached to APi to request data from a caching 
node attached to APj. In order to deduce the minimum number 
of overall caching points in the network, we can formulate an 
Integer Linear Program (ILP), as presented in the following 
sub-section. Then, in section IV-C we refine our model, aiming 
to minimize the size of the cache, at the same time letting more 
nodes to step in as caches, and we formulate an ILP for this 
case, too. 

B. Minimizing the Number of Caching Nodes 
We have a set of {APi} Access Points, but for our model we 

should rather focus on the nodes. The nodes {v1, …, vN} and the 
direct links between them { eij } can be considered the vertices 
and the edges of a graph G. We define the connectivity matrix 
{aij}, where a matrix element is 1 if there is a direct connection 
between nodes i and j, 0 otherwise. Note that this can be 
obtained by recoding the original content locally with pseudo 
random coefficients.  

Our goal is to determine the minimal number of caching 
nodes, a subset of G. ci is the total capacity of the direct link 
from node i (we consider that the total incoming and outgoing 
capacities are equal). In order to decode the original content, we 
need at least a full generation of encoded packets (the size of a 
generation is noted with gw). We introduce two binary variables; 
xij denotes a direct link between nodes vi and vj, xij = 1 if vi sends 
the cached content to vj, xij = 0 otherwise. Similarly, ui = 1, if 
node i is a cache, ui = 0 otherwise.  

Our optimization problem is: 
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Equations (2) and (3) ensure that the caches and the regular 

nodes cannot exceed their total link capacities. Equation (4) 
ensures that all demand is served. Equation (5) assures that xij 
can be greater than 0 only if there is a direct physical connection 
between the nodes and eq. (6) that xij is greater than 0 only if 
the connection is originating from a cache.  

The generic form of this kind of optimization problem is 
known as the geometric set cover problem, and has been 
continuously researched in the last decades. Based on the earlier 
research results it is hard to solve [18][19], and the most 
versions of the problem are still considered to be NP-hard [20]. 
Also, [25] states that 0-1 Integer Linear Programming (ILP) is 
NP-complete. 

C. Minimizing the Cache Size  
In the previous two sub-sections we analyzed the ways to 

minimize the number of caching nodes, but we did not restrict 
the size of the cache. In this subsection we try to minimize the 
size of the cache, but we do not restrict the number of caching 
nodes. Note that every node is a potential cache node, because 
every node plays the streaming content (we exclude those nodes 
that do not follow the video stream). Let us keep the same 
notations we introduced earlier in this section. We note the 
number of chunks stored at node i with ki, and the number of 
actually downloaded encoded chunks from i to j with hij . 

  Now the objective is to 
minimize ∑ ki                   (9) 

subject to 
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D. Discussions on the Caching Details 
In the case of RLNC, one question is to set the size of the 

Galois field. In our earlier work we used GF(28). This means 
that for each packet we should attach a 1 byte coefficient, which 
would result in large overhead. Given that there is no need to 
encode the same packet multiple times (which would imply the 
encoding of the coefficients, too) we can apply the workaround 
proposed in [23]. It suffices to embed only the seed to be used 
to generate the series of random coefficients. Additionally we 
have to take care to use the same pseudo random number 
generator at each node. This trick allows us to reduce the 
coefficient related overhead to a mere four bytes, and this value 
remains constant, whatever the number of encoded segments 
might be. 

In our model we did not include the effect of the distance 
between the wireless source and destination, although in some 
wireless technologies this might change the coverage area of 
the source. Also we did not consider the possibility of 
overhearing [24] (which might be considered as an implicit 
multicast packet distribution) that would further increase the 
efficiency of our proposal. 

Note that when we minimize the number of caches we might 
gain a collateral advantage. Because the cache will operate at 
higher loads, it will be more efficient, since it avoids idle 
periods (in terms of data transfer), under which it still has to 
keep its wireless interface active, waiting for newer requests. 
Therefore from p.o.v. of green networking the first optimization 
problem corresponds to the maximization of a naïve green 
networking model. Nevertheless, the details of this relation 
should be further investigated (e.g., the effect of the receiver’s 
distance from the source). 

VI. CONCLUSION 
In crowded events several scenarios are possible where 

streaming media based services are required. Due to their high 
bandwidth demand, these applications heavily stress the local 
access networks. In such cases any extra service results in 
dramatical QoS degradation. One possibility to support such 
services is to offload the access network by local, distributed 
caching mechanisms. We have proposed such a solution and 
built a model to investigate the behavior of our proposal. We 
found that it is more advantageous than a simple distributed 
caching solution and discussed the particularities of the 
proposed scenarios. 

Our proposal allows the design and deployment of added 
value services for future large events at lower infrastructure 
costs. In our future work we plan to investigate the integration 
of caching and peer-to-peer mechanisms for the real time 
streaming media distribution, expecting that the application 
supporting near real-time services brings further advantages to 
the service providers. 
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in the system, such as the diameter of the network is 5 hops in 
a dense scenario. As explained earlier, the number of nodes 
connected to a given AP should be less than the maximum 
capacity, in order to maintain the required QoS, so the above 
parameters would mean the deployment of 10 APs. We also 
investigated a sparse scenario, where nodes are farther away, 
and the maximum number of APs is 15. The number of nodes 
demanding the service was set to 20% of N, a worst case upper 
bound. The gw parameter is also downsized to allow the solver 
to complete, and we set it for gw=10, meaning that a node can 
not get all its chunks at once from a single cache. 

Table I presents the average values resulted from 5 
successful runs for each scenario. For the first optimization 
problem we show the total number of caches in the network. 
For the second optimization problem we show the average 
cache size / each node in the network. 

We can see that when we optimize on the number of caches, 
we get larger numbers compared to the situation when we 
would evenly assign the maximum number of requesting nodes 
to each cache. This occurs due to the randomness of the 
topology: some caches might not serve nodes at full speed, as 
the requesting node is out of its contact area. As the network 
grows in size, the requests are distributed more evenly on 
average, thus relatively fewer caches suffice. For the second 
optimization problem we see that the average number of chunks 
to be stored at nodes remains low. 

C. Particularities of Different Networking Topologies 
The three scenarios introduced in section III-A have direct 

implications on the underlying networking topologies. 
Actually, the difference is made by the users (participants at the 
event), whose actions and movement is constrained in different 
manners. Obviously, any categorization of such behavior 
simplifies the scenario and in the case of real life deployment 
the operator or service provider should conduct its own 
assessment on the user group it wants to serve. With this remark 
in mind we still can model with good accuracy the behavior of 
the users, which has direct effect on the networking topology 
and mobility of their handheld smart devices. In the following 
we will focus on the nodes, even if the decision on their position 

and mobility is taken by their respective owners. 
We have analysed the requirements in each scenario and we 

recommended the appropriate caching method for each, as 
follows (also see Table II). 

In the Tour scenario the nodes are partitioned in separate 
groups along the track of the competition. Practically this 
results in smaller, isolated groups of nodes. Additionally, once 
a viewer joins a group, she/he will stick to that group. We have 
in this group lower number of nodes and higher group stability, 
so we considered that in this particular scenario we should 
rethink the priorities based on which we selected the network 
coding method implemented in the caches. Note that the RLNC 
variant of network coding offers us scalability (we can bring in 
many coding nodes if more caches are required) and flexibility 
(we do not have to define in advance the roles among caches). 
Nevertheless, in this tour scenario it is worth considering the 
fixed network coding, which trades flexibility for simplicity. 
Practically this requires in addition the definition of the nodes 
that have to act as caches, encoding nodes and for each cache 
the nodes that are linked to them. 

The lightest technique for fixed network coding is the bitwise 
XOR [5][7]. In order to confer some flexibility and robustness 
to the caches using XOR based coding we propose the 
following solution. First, several nodes should agree on serving 
as caches. Then they should divide the roles, some of them 
storing packets without encoding, while at least one of them 
should store bitwise XOR-ed packets. Once constructed this 
caching group, any requester should choose any combination of 
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D. Discussions on the Caching Details 
In the case of RLNC, one question is to set the size of the 

Galois field. In our earlier work we used GF(28). This means 
that for each packet we should attach a 1 byte coefficient, which 
would result in large overhead. Given that there is no need to 
encode the same packet multiple times (which would imply the 
encoding of the coefficients, too) we can apply the workaround 
proposed in [23]. It suffices to embed only the seed to be used 
to generate the series of random coefficients. Additionally we 
have to take care to use the same pseudo random number 
generator at each node. This trick allows us to reduce the 
coefficient related overhead to a mere four bytes, and this value 
remains constant, whatever the number of encoded segments 
might be. 

In our model we did not include the effect of the distance 
between the wireless source and destination, although in some 
wireless technologies this might change the coverage area of 
the source. Also we did not consider the possibility of 
overhearing [24] (which might be considered as an implicit 
multicast packet distribution) that would further increase the 
efficiency of our proposal. 

Note that when we minimize the number of caches we might 
gain a collateral advantage. Because the cache will operate at 
higher loads, it will be more efficient, since it avoids idle 
periods (in terms of data transfer), under which it still has to 
keep its wireless interface active, waiting for newer requests. 
Therefore from p.o.v. of green networking the first optimization 
problem corresponds to the maximization of a naïve green 
networking model. Nevertheless, the details of this relation 
should be further investigated (e.g., the effect of the receiver’s 
distance from the source). 

VI. CONCLUSION 
In crowded events several scenarios are possible where 

streaming media based services are required. Due to their high 
bandwidth demand, these applications heavily stress the local 
access networks. In such cases any extra service results in 
dramatical QoS degradation. One possibility to support such 
services is to offload the access network by local, distributed 
caching mechanisms. We have proposed such a solution and 
built a model to investigate the behavior of our proposal. We 
found that it is more advantageous than a simple distributed 
caching solution and discussed the particularities of the 
proposed scenarios. 

Our proposal allows the design and deployment of added 
value services for future large events at lower infrastructure 
costs. In our future work we plan to investigate the integration 
of caching and peer-to-peer mechanisms for the real time 
streaming media distribution, expecting that the application 
supporting near real-time services brings further advantages to 
the service providers. 
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in the system, such as the diameter of the network is 5 hops in 
a dense scenario. As explained earlier, the number of nodes 
connected to a given AP should be less than the maximum 
capacity, in order to maintain the required QoS, so the above 
parameters would mean the deployment of 10 APs. We also 
investigated a sparse scenario, where nodes are farther away, 
and the maximum number of APs is 15. The number of nodes 
demanding the service was set to 20% of N, a worst case upper 
bound. The gw parameter is also downsized to allow the solver 
to complete, and we set it for gw=10, meaning that a node can 
not get all its chunks at once from a single cache. 

Table I presents the average values resulted from 5 
successful runs for each scenario. For the first optimization 
problem we show the total number of caches in the network. 
For the second optimization problem we show the average 
cache size / each node in the network. 

We can see that when we optimize on the number of caches, 
we get larger numbers compared to the situation when we 
would evenly assign the maximum number of requesting nodes 
to each cache. This occurs due to the randomness of the 
topology: some caches might not serve nodes at full speed, as 
the requesting node is out of its contact area. As the network 
grows in size, the requests are distributed more evenly on 
average, thus relatively fewer caches suffice. For the second 
optimization problem we see that the average number of chunks 
to be stored at nodes remains low. 

C. Particularities of Different Networking Topologies 
The three scenarios introduced in section III-A have direct 

implications on the underlying networking topologies. 
Actually, the difference is made by the users (participants at the 
event), whose actions and movement is constrained in different 
manners. Obviously, any categorization of such behavior 
simplifies the scenario and in the case of real life deployment 
the operator or service provider should conduct its own 
assessment on the user group it wants to serve. With this remark 
in mind we still can model with good accuracy the behavior of 
the users, which has direct effect on the networking topology 
and mobility of their handheld smart devices. In the following 
we will focus on the nodes, even if the decision on their position 

and mobility is taken by their respective owners. 
We have analysed the requirements in each scenario and we 

recommended the appropriate caching method for each, as 
follows (also see Table II). 

In the Tour scenario the nodes are partitioned in separate 
groups along the track of the competition. Practically this 
results in smaller, isolated groups of nodes. Additionally, once 
a viewer joins a group, she/he will stick to that group. We have 
in this group lower number of nodes and higher group stability, 
so we considered that in this particular scenario we should 
rethink the priorities based on which we selected the network 
coding method implemented in the caches. Note that the RLNC 
variant of network coding offers us scalability (we can bring in 
many coding nodes if more caches are required) and flexibility 
(we do not have to define in advance the roles among caches). 
Nevertheless, in this tour scenario it is worth considering the 
fixed network coding, which trades flexibility for simplicity. 
Practically this requires in addition the definition of the nodes 
that have to act as caches, encoding nodes and for each cache 
the nodes that are linked to them. 

The lightest technique for fixed network coding is the bitwise 
XOR [5][7]. In order to confer some flexibility and robustness 
to the caches using XOR based coding we propose the 
following solution. First, several nodes should agree on serving 
as caches. Then they should divide the roles, some of them 
storing packets without encoding, while at least one of them 
should store bitwise XOR-ed packets. Once constructed this 
caching group, any requester should choose any combination of 
those caches in order to be able to replay the stream. 

In the stadium scenario we have static nodes, bound to the 
seats and we have a high node density. But due to the large 
number of nodes we might use the advantages of statistical 
multiplexing of more sources compared to the tour scenario. 
Under such conditions we should try to use the RLNC based 
method and minimize the number of caches. In order to avoid 
the battery drain, periodically we should change the caching 
roles of the nodes, similarly to the top peer rotation mechanism 
in SopCast. 

Compared to the previous two scenarios, in the festival 
scenario we have much higher node mobility, because the 
participants can walk within the festival area. Also, we have 
large number of nodes. This leads us to the use of RLNC based 
solution, minimizing the cache size. This also spreads content 
as much as possible, and the nodes are not forced to rely only 
on few caches (which would happen if we minimize the number 
of caches instead). 

TABLE II 
CACHING METHODS FOR DIFFERENT SCENARIOS 

 Stadium Festival Tour 

XOR based coding   X 

Minimal nr. of caches X   

Minimal cache size  X  

 

TABLE I 
OPTIMAL CACHE PARAMETERS FROM  

THE OPTIMIZATION RESULTS OF ILP  MODELS 

 N = 10 N = 50 N = 100 

Total nr. of caches 
(dense) 

2 7 13 

Total nr. of caches 
(sparse) 

3 10 15 

Average  cache sizes 
(dense) 

1 3 4 

Average cache sizes 
(sparse) 

2 4 5 
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D. Discussions on the Caching Details 
In the case of RLNC, one question is to set the size of the 

Galois field. In our earlier work we used GF(28). This means 
that for each packet we should attach a 1 byte coefficient, which 
would result in large overhead. Given that there is no need to 
encode the same packet multiple times (which would imply the 
encoding of the coefficients, too) we can apply the workaround 
proposed in [23]. It suffices to embed only the seed to be used 
to generate the series of random coefficients. Additionally we 
have to take care to use the same pseudo random number 
generator at each node. This trick allows us to reduce the 
coefficient related overhead to a mere four bytes, and this value 
remains constant, whatever the number of encoded segments 
might be. 

In our model we did not include the effect of the distance 
between the wireless source and destination, although in some 
wireless technologies this might change the coverage area of 
the source. Also we did not consider the possibility of 
overhearing [24] (which might be considered as an implicit 
multicast packet distribution) that would further increase the 
efficiency of our proposal. 

Note that when we minimize the number of caches we might 
gain a collateral advantage. Because the cache will operate at 
higher loads, it will be more efficient, since it avoids idle 
periods (in terms of data transfer), under which it still has to 
keep its wireless interface active, waiting for newer requests. 
Therefore from p.o.v. of green networking the first optimization 
problem corresponds to the maximization of a naïve green 
networking model. Nevertheless, the details of this relation 
should be further investigated (e.g., the effect of the receiver’s 
distance from the source). 

VI. CONCLUSION 
In crowded events several scenarios are possible where 

streaming media based services are required. Due to their high 
bandwidth demand, these applications heavily stress the local 
access networks. In such cases any extra service results in 
dramatical QoS degradation. One possibility to support such 
services is to offload the access network by local, distributed 
caching mechanisms. We have proposed such a solution and 
built a model to investigate the behavior of our proposal. We 
found that it is more advantageous than a simple distributed 
caching solution and discussed the particularities of the 
proposed scenarios. 

Our proposal allows the design and deployment of added 
value services for future large events at lower infrastructure 
costs. In our future work we plan to investigate the integration 
of caching and peer-to-peer mechanisms for the real time 
streaming media distribution, expecting that the application 
supporting near real-time services brings further advantages to 
the service providers. 
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New Key Agreement Techniques for Sensor
Networks

Abhishek Parakh and Subhash Kak

Abstract—We propose two computationally efficient key agree-
ment algorithms. The schemes are ideally suited for computa-
tionally constrained environments such as sensor networks. The
first proposed technique is general and uses matrix factorization.
We provide constructive algorithms to implement the scheme.
The second algorithm uses commutative property of matrices to
distribute keys and provides two different keys per node pair.
Both the algorithms are practical in terms of implementation,
security provided and linear in computational complexity.

Index Terms—Key distribution, sensor networks, matrix fac-
torization

I. INTRODUCTION

Sensor networks are becoming increasingly popular for
applications such as patient health monitoring, detection of
border crossings, bridge stress monitoring, signal relay points
in battlefields and so on. In many of these applications
sensors need to communicate securely to either relay data to
base station or perform distributed computations. Therefore,
encryption/decryption keys need to be distributed among the
sensors.

Key distribution in sensor is particularly challenging be-
cause sensors have very limited computational power and
transmission ranges. While in recent years the memory capac-
ity for sensors has grown, they still cannot hold large number
of keys for pair-wise communication. The key distribution
challenge is further complicated by the fact that most sensors
are deployed at random. As a result, we do not know a priori
which sensors are going to be neighbors of other sensors that
is within communication range of each other.

In general, for any key distribution scheme two techniques
can be adopted - either install each node with pairwise
symmetric keys before deployment or let sensors perform a
public key exchange.

Installing pairwise symmetric keys is not a practical solution
as it requires large storage capacity and does not allow for
dynamic networking where nodes leave and new nodes join.
This may happen because old sensors stop working and need
to be replaced with new ones or the batteries run out.

If we consider a network to have N nodes, then a pair-wise
symmetric key distribution would require each node to store
N − 1 unique keys (because of lack of a priori knowledge
of sensor’s neighbors). If AES is used as the encryption
algorithm, this would require (N − 1) · 128 bits of storage
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as it is typical to have 10,000 sensors deployed in a network.
If we allow for multiple sensor to use the same key, then we
can reduce the number of keys installed on a given sensor, but
that also means that once deployed there is a chance a sensor
may not share a key with some of its neighbors. Therefore, if
a sensor wished to communicate with a neighbor with which
it does not share a key (or is out of its communication range),
then link encryption (hop-by-hop) is used. In link encryption,
assume sensor a wants to communicate with sensor d with
which it does not share a key (or d is out of its communication
range). If a shares a key with node b which in turn shares a key
with node d, then a can send b a message such as Ekab

(m);
where kab is a key shared between a and b. Node b upon
receiving this message, first decrypts it and then re-encrypts it
with key kbd that it shares with node d and send it to d. This
latter approach requires multiple encryption/decryptions along
the way as well as a path finding and routing algorithm.

Eschenauer and Gligor [1] introduced the above approach
where they assumed limited memory capacity and limited
communication range for sensor networks. Further, they as-
sumed random deployment of sensors, i.e. a sensor’s neigh-
bors were not known before deployment. As a result, after
deployment the sensors performed a neighbor discovery in
which they determined who their neighbors are and with which
one of them they share keys. Then the sensors performed
a path discovery to those sensors with which they do not
share keys. Once a path was discovered, messages were sent
using link-encryption. Although, the scheme proposed in [1]
is very general and applicable to most scenarios, in practise
one does have some knowledge of sensor neighborhood before
deployment. Hence, EG requires the storage of larger number
of keys on each sensor than may be required in a given
scenario. Further, the path finding and routing protocols in a
distributed sensor network are not trivial, especially when the
number of neighbors one shares keys with are only a fraction
of the number of neighbors actually in communication range.

Du et al. [2] assume deployment knowledge to reduce
the number of keys stored per node. A gaussian probability
distribution function is assumed with every sensor having a
high probability of being deployed at a specific coordinate in
a grid. However, such a scheme is not applicable to mobile
nodes. Chan et al. [3] proposed a q-composite scheme that is
similar to the EG scheme but requires that the nodes share q
keys from the key ring instead of just one key and then final
key to be used for encryption is computed as a function of
these q shared keys.

In [4] it is assumed that mobile sensors handle the load
of key distribution while static sensors only require minimal
resources for key management. A bootstrapping technique is




