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Correlation clustering of graphs and integers
S. Akiyama, L. Aszalós, L. Hajdu, A. Pethő

Abstract—Correlation clustering can be modeled in the fol-
lowing way. Let A be a nonempty set, and ∼ be a symmetric
binary relation on A. Consider a partition (clustering) P of A.
We say that two distinct elements a, b ∈ A are in conflict, if
a ∼ b, but a and b belong to different classes (clusters) of P ,
or if a �∼ b, however, these elements belong to the same class
of P . The main objective in correlation clustering is to find an
optimal P with respect to ∼, i.e. a clustering yielding the minimal
number of conflicts. We note that correlation clustering, among
others, plays an important role in machine learning.

In this paper we provide results in three different, but closely
connected directions. First we prove general new results for
correlation clustering, using an alternative graph model of the
problem. Then we deal with the correlation clustering of positive
integers, with respect to a relation ∼ based on coprimality. Note
that this part is in fact a survey of our earlier results. Finally, we
consider the set of so-called S-units, which are positive integers
having all prime divisors in a fixed finite set. Here we prove new
results, again with respect to a relation defined by the help of
coprimality. We note that interestingly, the shape of the optimal
clustering radically differs for integers and S-units.

Index Terms—correlation clustering, graphs, integers, S-units.

I. INTRODUCTION

Correlation clustering was introduced in the field of machine
learning. We refer to the paper of Bansal et al. [3], which also
gives an excellent overview of the mathematical background.
Let G be a complete graph on n vertices and label its edges
with +1 or −1 depending on whether the endpoints have
been deemed to be similar or different. Consider a partition
of the vertices. Two edges are in conflict with respect to the
partition if they belong to the same class, but are different,
or they belong to different classes although they are similar.
The ultimate goal of correlation clustering is to find a partition
with minimal number of conflicts. The special feature of this
clustering is that the number of clusters is not specified. In
some applications G is not necessarily a complete graph like
in [5] or the labels of the edges are real numbers like in [9].

Correlation clustering admits the following equivalent
model too. Let A be a nonempty set, ∼ be a tolerance relation
on A, i.e., a reflexive and symmetric binary relation. Consider
a partition (clustering) P of A. We say that two elements
a, b ∈ A are in conflict, if a ∼ b, but a and b belong
to different classes (clusters) of P , or if a �∼ b, however,
these elements belong to the same class of P . The main
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A. Pethő is with the Faculty of Computer Science, University of Debrecen,

H-4010 Debrecen, P.O. Box 12, Hungary

objective is to find an optimal P with respect to ∼, i.e. a
clustering yielding the minimal number of conflicts. It is worth
to mention that if we also assume that ∼ is transitive, then it
is an equivalence relation. In this case the optimal clustering
is obviously provided by the equivalence classes of ∼. So
this is the lack of the transitive property which makes the
problem of correlation clustering interesting and important.
Every clustering of A implies an equivalence relation on
A. The number of conflicts in a clustering reflects a kind
of distance of ∼ to this equivalence relation. An optimal
correlation clustering causes the least number of conflicts
among all clusterings, thus it induces a nearest equivalence
relation to ∼.

A typical application of correlation clustering is the classifi-
cation of unknown topics of (scientific) papers. In this case the
papers represent the elements of A and two papers are consid-
ered to be similar (or being in relation ∼), if one of them refers
to the other. The classes of an optimal clustering then can be
interpreted as the topics of the papers. This kind of clustering
has many applications: image segmentation [15], identifying
biologically relevant groups of genes [4], examining social
coalitions [16], reducing energy consumption in wireless sen-
sor networks [6], modeling physical processes [12], etc.

The number of partitions of sets having n elements grows
exponentially, so the exhaustive search is not available to find
an optimal clustering. Bansal et al. [3] showed that to find an
optimal clustering is NP-hard. Beside this, they also proposed
and analyzed algorithms for approximate solutions of the
problem. In fact the correlation clustering can be considered
to be an optimization problem: one should find the clustering
minimizing the number of conflicts. Thus it is possible to
apply traditional and modern optimization algorithms to find
almost optimal clusterings. Following this approach, Bakó and
Aszalós [2] have implemented several traditional methods, and
have also invented some new ones.

In this paper we consider infinite growing sequences of
labeled graphs such that the labeling is hereditary (see Section
II). Then we can define lower and upper densities of edges with
label +1 as well as of the classes in an optimal correlation
clustering. The aim of Section II is to show relations between
these quantities. Our results show that the choice of the
labeling heavily affects the structure of the optimal clustering.
For example Theorem 1 implies that if the upper density of
edges with +1 is less than 1/2 then there are at least two
classes in an optimal correlation clustering. The value 1/2 is
the best possible by Remark 1.

In Sections III and IV we investigate particular examples.
To introduce them we switch to the relational model. In that
case we may assume that Ai, i = 1, 2, . . . is a chain of subsets
of N and ∼i is the restriction of ∼ to Ai. Here ∼ denotes a
reflexive and symmetric relation on N. After fixing the basic
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