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Péter Battyányi and György Vaszil

Abstract—Membrane systems are nature motivated abstract
computational models inspired by basic features of biological
cells and their membranes. They are examples of the chemical
computational paradigm which describes computation in terms
of chemical solutions where molecules interact according to
rules defining their reaction capabilities. In this survey, we first
review some of the basic features and properties of the chemical
paradigm of computation, and also give a short introduction to
membrane systems. Then examine the relationship of the certain
chemical programming formalisms and some simple types of
membrane systems.

Index Terms—Abstract computational models, chemical com-
puting paradigm, membrane systems.

I. INTRODUCTION

MEMBRANE systems are abstract computational mod-
els inspired by the architecture and the functioning

of biological cells. Their structure consists of hierarchically
embedded membranes, with multisets of symbolic objects
associated to the regions enclosed by them. The evolution of
the system is governed by rules assigned to the regions. The
system performs nondeterministic transformations of these
multisets, which produces a series of configuration changes
which is interpreted as a computation. The area was initiated
by Gh. Păun in [11] and the literature on the domain has
grown very fast. Soon it became one of the most important
and most popular areas of Natural Computing. For details on
the developments, consult the monograph [12] or the more
recent handbook [13].

In this survey, we look at the field of membrane computing
as a particular example of the so called chemical computa-
tional paradigm. This paradigm aims to describe computations
in terms of a symbolic chemical solution of molecules and the
reactions which can take place between them. Its origins go
back to the Gamma programming language of Bânatre and
Le Métayer introduced in [6], [7]. Their aim was to free the
expression of algorithms from the sequentiality which is not
inherently present in the problem to be solved, that is, the
sequentiality which is implied by the structure of the computa-
tional model on which the given algorithm is to be performed.
In other words, their aim was to free the programmer from the
necessity of taking into account the underlying architecture of
the machine that is being programmed.

The idea was carried on into several directions, see [3] for an
overview. From our point of view, one of the most interesting
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developments was the introduction of the so called chemical
abstract machine, see [9], where the notion of membrane
appears serving as a delimiter between different types of sub-
solutions, forcing the reactions of the sub-solutions to occur
in a locally isolated way. This model and the idea of locally
delimited regions and membranes was one of the explicit
motivations behind membrane systems, as they appear in [11].

In the following we give a short introduction to some of
the formalisms used to describe computations in the chemical
way, and also present some of the basic notions of membrane
computing. Then, based on the results of [10] and [8] we
present some ideas on how the chemical formalisms and
membrane systems can be related to each other. This approach
is interesting in at least two ways. By being able to translate
chemical programs to membrane systems, we could obtain
a high level programming language for the description of
membrane algorithms. On the other hand, by being able to
describe membrane computations with some of the chemical
formalisms, we would be able to reason about the properties
of membrane systems in a mathematically precise manner.

II. PRELIMINARY DEFINITIONS AND NOTATION

An alphabet is a finite non-empty set of symbols V , the set
of strings over V is denoted by V ∗ .

A finite multiset over an alphabet V is a mapping M : V →
N where N denotes the set of non-negative integers, and M(a)
for a ∈ V is said to be the multiplicity of a in M . The set of
all finite multisets over the set V is denoted by M(V ).

We usually enumerate the not necessarily distinct elements
a1, . . . , an of a multiset as M = 〈a1, . . . , an〉, but the multiset
M can also be represented by any permutation of a string
w = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where if M(x) �= 0,

then there exists j, 1 ≤ j ≤ n, such that x = aj . The empty
multiset is denoted by ∅.

For more on the basics of formal language theory and
Membrane Computing the reader is referred to the monograph
[15], and the handbooks [14] and [13].

III. COMPUTATION AS REACTIONS IN A CHEMICAL
SOLUTION

A chemical “machine” can be thought of as a symbolic
chemical solution where data can be seen as molecules and
operations as chemical reactions. If some molecules satisfy
a reaction condition, they are replaced by the result of the
reaction. If no reaction is possible, the program terminates.
Chemical solutions are represented by multisets. Molecules
interact freely according to reaction rules which results in an

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Membrane Systems from the Viewpoint of the
Chemical Computing Paradigm
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Γ((R1, A1), . . . , (Rk, Ak))((M\(x1, . . . , xn))
∪A(x1, . . . , xn)),

if x1, . . . , xn ∈ M and Ri(x1, . . . , xn) for
some 1 ≤ i ≤ k, or

M, otherwise,

where Ri and Ai, 1 ≤ i ≤ k, are n-ary relations (the
reaction conditions) and n-ary functions (the actions) on the
elements of the multiset M , respectively. If some elements of
the multiset M , say x1, . . . , xn, satisfy a reaction condition Ri

for some i, 1 ≤ i ≤ k, then the elements may be replaced by
the result of the action Ai(x1, . . . , xn), and the Γ function is
applied on the resulting multiset again. This process continues
until no elements satisfy any of the relations Ri, 1 ≤ i ≤ k.

Example 3: To clarify this type of notation, consider the
Gamma program for selecting the minimal element of a set of
numbers.

minset(M) = Γ(R,A)(M) where
R(x, y) = (x < y),
A(x, y) = (x).

IV. MEMBRANE SYSTEMS

Similarly to chemical programs, membrane systems (also
called P systems) work with multisets of symbolic objects.
They consist of a structured set of regions, each containing a
multiset of objects and a set of evolution rules which define
how the objects are produced, destroyed, or moved inside
the system. A computation is performed by passing from one
configuration to another one, applying the rules synchronously
in each region.

We consider two variants in this paper: the rules are either
multiset rewriting rules given in the form of u → v, or
communication rules of the form (u, in; v, out) where u, v
are finite multisets. In both cases, the rules are applied in the
maximal parallel manner, that is, as many rules are applied in
each region as possible. The end of the computation is defined
by halting: the computation finishes when no more rules can
be applied in any of the regions. The result is a number, the
number of objects in a membrane labeled as output.

A P system of degree n ≥ 1 is a construct

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, out)

where
• O is an alphabet of objects,
• µ is a membrane structure of the n membranes. The out-

most membrane which is unique and usually labeled with
1, is called the skin membrane, and the membrane struc-
ture is denoted by a sequence of matching parentheses
where the matching pairs have the same label as the
membranes they represent, see Figure 1 for an example.

• wi ∈ M(O), 1 ≤ i ≤ n, are the initial contents of the n
regions.

• Ri, 1 ≤ i ≤ n, are the sets of evolution or communica-
tion rules associated to the regions, and

• out ∈ {1, . . . , n} is the label of the output membrane.
As mentioned above, we consider two types of P systems

in this paper. In the case of rewriting P systems, the rules

Fig. 1. A membrane structure with the skin membrane labeled as 1, and the
corresponding tree representation. It can also be represented by a string of
matching parentheses as [1 [2 ] [3 [4 [5 ] [6 ] ] [7 ] ] ].

of the set R are of the form u → v where u ∈ M(O) and
v ∈ M(O × TAR) with TAR = {here, out} ∪ {inj | 1 ≤
j ≤ n}. In the case of antiport P systems, the rules don’t
allow the changing of the objects only their movement between
the regions, they are of the form (u, in; v, out) where u, v ∈
M(O).

The rules are applied in the non-deterministic, maximally
parallel manner to the n-tuple of multisets of objects consti-
tuting the configuration of the system. For two configurations
C1 = (u1, . . . , un) and C2 = (v1, . . . , vn), we can obtain
C2 from C1, denoted as C1 ⇒ C2, by applying the rules of
R1, . . . , Rn in the following way.

In the case of rewriting P systems, the application of u →
v ∈ Ri in the region i means to remove the objects of u from
ui and add the new objects specified by v to the system. The
objects of v should be added to the regions as specified by
the target indicators associated to them: If v contains a pair
(a, here) ∈ O×TAR, then a is placed in region i, the region
where the rule is applied. If v contains (a, out) ∈ O × TAR,
then a is added to the contents of the parent region of region i;
if v contains (a, inj) ∈ O×TAR for some region j which is
contained inside the region i (so region i is the parent region
of region j), then a is added to the contents of region j.

In the case of antiport systems, the application of
(u, in; v, out) ∈ Ri in region i means to move the objects
of u from the parent region into region i, and simultaneously,
to move the objects of v into the parent region.

The n-tuple (w1, . . . , wn) is the initial configuration of Π.
The objects evolve simultaneously, and the rules by which

they evolve are chosen nondeterministically, but in a max-
imally parallel manner. This means, that in each region,
objects are assigned to rules, nondeterministically choosing
the rules and the objects assigned to each rule, but in such
a way that no further rule can be applied to the remaining
objects. A rule can be applied in the same step more than
once, only the number of occurrences of objects matters.
Objects which remain unassigned, appear unchanged in the
next configuration.

A sequence of transitions between configurations is called
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TABLE I
THE ELEMENTS OF THE ABSTRACT MACHINE AND THE INGREDIENTS OF A

CHEMICAL SOLUTION.

Abstract machine Chemistry

Data Molecule

Multiset Solution

Parallelism/nondeterminism Brownian motion

Computation Reaction

implicitly parallel, non-deterministic, distributed model. The
chemical analogy is carried over also to the execution model:
The Brownian motion of the chemical molecules correspond to
the parallel and nondeterministic computation of the chemical
machine. See table I for a summary of this correspondence.

To help the easier understanding of the notions, we start
with the discussion of the Higher-order Chemical Language
(HOCL) from [1], which can be presented in a more reader-
friendly manner as the mathematically more precise γ-
calculus, see [4], which we will also discuss later.

In general, a reaction rule can be written as

replace P by M if C

where P is a pattern, C is the reaction condition, and M is the
result of the reaction. For example, the solution

〈(replace x, y by x if x < y), 2, 7, 4, 3, 6, 8〉

will result in the solution

〈(replace x, y by x if x < y), 2〉

containing the reaction and the minimum value among the
molecules. Notice that the order in which the reactions are
performed, that is, the order in which the numbers are com-
pared is not specified.

Solutions can also contain sub-solutions, as seen in the
following example, where the least common multiple of 4 and
6 is computed.

Example 1: Let us start with

let multiplier = replace x, ω by ω if
not(4 div x and 6 div x),

let clean = replace-one 〈multiplier, ω〉 by ω,
let min = replace x, y by x if x < y,

and consider the following solution

〈min, clean, 〈multiplier, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24〉 〉

where the “top level” is a solution containing the reactions
min, clean and a sub-solution, which is another solution with
the reaction multiplier and a set of numbers. When the sub-
solution becomes inert, that is, when the common multiples
of 4 and 6 are selected, the reactions of the top level, min
or clean are activated. First only the condition of clean can
be matched, so it is applied, and the remaining numbers from
the sub-solution are “moved” one level higher while the sub-
solution and the reaction multiplier are eliminated. Now the
conditions of min can also be matched, resulting in the solution

〈min, 12〉.

Notice the pattern ω which is special in the sense that it
can match anything, and the “one-shot” reaction clean using
the keyword replace-one, meaning that its application is only
possible once, as the application “consumes” the reaction
itself.

Based on these examples, the reader might agree that we
can formulate some of the important characteristic properties
of the chemical computational model as follows:

• Parallel execution: when two reactions involve distinct
elements, they can occur simultaneously,

• mutual exclusion: a molecule cannot take part in more
than one reaction at the same time,

• atomic capture: either all ingredients of the reaction are
present, or no reaction occurs.

Example 2: To see why these characteristics are important,
consider the problem of the dining philosophers, a common
example for the demonstration of concurrent algorithm design
techniques. Let us state the problem as follows: There are 5
philosophers sitting at a round table, with 5 plates of spaghetti
in front of them, and 5 forks between the plates. A philosopher
is either thinking or eating, but when he is eating, he needs
both of the forks on each side of his plate since philosophers
only eat spaghetti with two forks. Thus, it is not possible that
two neighbors eat at the same time.

A description of the problem can be given in the above
described chemical formalism as follows. Let

let eat = replace Fork : f1, Fork : f2 by Phil : f1 if
f2 = f1 + 1 mod 5,

let think = replace Phi : f by
Fork : f, Fork : f + 1 mod 5 if true,

and consider the following symbolic solution

〈eat, think, Fork : 1, Fork : 2, . . . , Fork : 5〉

which contains two reaction rules and five numbered objects
of the type Fork, representing the situation when all the forks
are on the table, that is, when no philosopher is eating. This
situation can change through the reaction eat which replaces
to adjacent forks with the corresponding numbered object of
the type Phil. Conversely, the reaction think replaces an eating
philosopher with the corresponding forks.

Consider now the consequences of the above mentioned
three characteristic properties for the behavior of this setup.
Due to parallel execution, if two philosophers are not neigh-
bors at the table, they are allowed to eat simultaneously and
independently of each other. The mutual exclusion property
guarantees that one fork is used by at most one philosopher,
and as the consequence of atomic capture, deadlocks are
“automatically” avoided, since a fork can be picked up by
a philosopher only in the case when the other fork is also
available.

Now, before we continue, based mainly on [5], we present
a more rigorous formalism which we will extend in Section V.
As we have already seen, it is a tool for multiset manipulation,
and the programs are collections of pairs of reaction conditions
and actions. The Γ function is defined as

Γ((R1, A1), . . . , (Rk, Ak))(M) =
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M(O).

The rules are applied in the non-deterministic, maximally
parallel manner to the n-tuple of multisets of objects consti-
tuting the configuration of the system. For two configurations
C1 = (u1, . . . , un) and C2 = (v1, . . . , vn), we can obtain
C2 from C1, denoted as C1 ⇒ C2, by applying the rules of
R1, . . . , Rn in the following way.

In the case of rewriting P systems, the application of u →
v ∈ Ri in the region i means to remove the objects of u from
ui and add the new objects specified by v to the system. The
objects of v should be added to the regions as specified by
the target indicators associated to them: If v contains a pair
(a, here) ∈ O×TAR, then a is placed in region i, the region
where the rule is applied. If v contains (a, out) ∈ O × TAR,
then a is added to the contents of the parent region of region i;
if v contains (a, inj) ∈ O×TAR for some region j which is
contained inside the region i (so region i is the parent region
of region j), then a is added to the contents of region j.

In the case of antiport systems, the application of
(u, in; v, out) ∈ Ri in region i means to move the objects
of u from the parent region into region i, and simultaneously,
to move the objects of v into the parent region.

The n-tuple (w1, . . . , wn) is the initial configuration of Π.
The objects evolve simultaneously, and the rules by which

they evolve are chosen nondeterministically, but in a max-
imally parallel manner. This means, that in each region,
objects are assigned to rules, nondeterministically choosing
the rules and the objects assigned to each rule, but in such
a way that no further rule can be applied to the remaining
objects. A rule can be applied in the same step more than
once, only the number of occurrences of objects matters.
Objects which remain unassigned, appear unchanged in the
next configuration.

A sequence of transitions between configurations is called
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TABLE I
THE ELEMENTS OF THE ABSTRACT MACHINE AND THE INGREDIENTS OF A

CHEMICAL SOLUTION.

Abstract machine Chemistry

Data Molecule

Multiset Solution

Parallelism/nondeterminism Brownian motion

Computation Reaction

implicitly parallel, non-deterministic, distributed model. The
chemical analogy is carried over also to the execution model:
The Brownian motion of the chemical molecules correspond to
the parallel and nondeterministic computation of the chemical
machine. See table I for a summary of this correspondence.

To help the easier understanding of the notions, we start
with the discussion of the Higher-order Chemical Language
(HOCL) from [1], which can be presented in a more reader-
friendly manner as the mathematically more precise γ-
calculus, see [4], which we will also discuss later.

In general, a reaction rule can be written as

replace P by M if C

where P is a pattern, C is the reaction condition, and M is the
result of the reaction. For example, the solution

〈(replace x, y by x if x < y), 2, 7, 4, 3, 6, 8〉

will result in the solution

〈(replace x, y by x if x < y), 2〉

containing the reaction and the minimum value among the
molecules. Notice that the order in which the reactions are
performed, that is, the order in which the numbers are com-
pared is not specified.

Solutions can also contain sub-solutions, as seen in the
following example, where the least common multiple of 4 and
6 is computed.

Example 1: Let us start with

let multiplier = replace x, ω by ω if
not(4 div x and 6 div x),

let clean = replace-one 〈multiplier, ω〉 by ω,
let min = replace x, y by x if x < y,

and consider the following solution

〈min, clean, 〈multiplier, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24〉 〉

where the “top level” is a solution containing the reactions
min, clean and a sub-solution, which is another solution with
the reaction multiplier and a set of numbers. When the sub-
solution becomes inert, that is, when the common multiples
of 4 and 6 are selected, the reactions of the top level, min
or clean are activated. First only the condition of clean can
be matched, so it is applied, and the remaining numbers from
the sub-solution are “moved” one level higher while the sub-
solution and the reaction multiplier are eliminated. Now the
conditions of min can also be matched, resulting in the solution

〈min, 12〉.

Notice the pattern ω which is special in the sense that it
can match anything, and the “one-shot” reaction clean using
the keyword replace-one, meaning that its application is only
possible once, as the application “consumes” the reaction
itself.

Based on these examples, the reader might agree that we
can formulate some of the important characteristic properties
of the chemical computational model as follows:

• Parallel execution: when two reactions involve distinct
elements, they can occur simultaneously,

• mutual exclusion: a molecule cannot take part in more
than one reaction at the same time,

• atomic capture: either all ingredients of the reaction are
present, or no reaction occurs.

Example 2: To see why these characteristics are important,
consider the problem of the dining philosophers, a common
example for the demonstration of concurrent algorithm design
techniques. Let us state the problem as follows: There are 5
philosophers sitting at a round table, with 5 plates of spaghetti
in front of them, and 5 forks between the plates. A philosopher
is either thinking or eating, but when he is eating, he needs
both of the forks on each side of his plate since philosophers
only eat spaghetti with two forks. Thus, it is not possible that
two neighbors eat at the same time.

A description of the problem can be given in the above
described chemical formalism as follows. Let

let eat = replace Fork : f1, Fork : f2 by Phil : f1 if
f2 = f1 + 1 mod 5,

let think = replace Phi : f by
Fork : f, Fork : f + 1 mod 5 if true,

and consider the following symbolic solution

〈eat, think, Fork : 1, Fork : 2, . . . , Fork : 5〉

which contains two reaction rules and five numbered objects
of the type Fork, representing the situation when all the forks
are on the table, that is, when no philosopher is eating. This
situation can change through the reaction eat which replaces
to adjacent forks with the corresponding numbered object of
the type Phil. Conversely, the reaction think replaces an eating
philosopher with the corresponding forks.

Consider now the consequences of the above mentioned
three characteristic properties for the behavior of this setup.
Due to parallel execution, if two philosophers are not neigh-
bors at the table, they are allowed to eat simultaneously and
independently of each other. The mutual exclusion property
guarantees that one fork is used by at most one philosopher,
and as the consequence of atomic capture, deadlocks are
“automatically” avoided, since a fork can be picked up by
a philosopher only in the case when the other fork is also
available.

Now, before we continue, based mainly on [5], we present
a more rigorous formalism which we will extend in Section V.
As we have already seen, it is a tool for multiset manipulation,
and the programs are collections of pairs of reaction conditions
and actions. The Γ function is defined as

Γ((R1, A1), . . . , (Rk, Ak))(M) =
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=





Γ((R1, A1), . . . , (Rk, Ak))((M\(x1, . . . , xn))
∪A(x1, . . . , xn)),

if x1, . . . , xn ∈ M and Ri(x1, . . . , xn) for
some 1 ≤ i ≤ k, or

M, otherwise,

where Ri and Ai, 1 ≤ i ≤ k, are n-ary relations (the
reaction conditions) and n-ary functions (the actions) on the
elements of the multiset M , respectively. If some elements of
the multiset M , say x1, . . . , xn, satisfy a reaction condition Ri

for some i, 1 ≤ i ≤ k, then the elements may be replaced by
the result of the action Ai(x1, . . . , xn), and the Γ function is
applied on the resulting multiset again. This process continues
until no elements satisfy any of the relations Ri, 1 ≤ i ≤ k.

Example 3: To clarify this type of notation, consider the
Gamma program for selecting the minimal element of a set of
numbers.

minset(M) = Γ(R,A)(M) where
R(x, y) = (x < y),
A(x, y) = (x).

IV. MEMBRANE SYSTEMS

Similarly to chemical programs, membrane systems (also
called P systems) work with multisets of symbolic objects.
They consist of a structured set of regions, each containing a
multiset of objects and a set of evolution rules which define
how the objects are produced, destroyed, or moved inside
the system. A computation is performed by passing from one
configuration to another one, applying the rules synchronously
in each region.

We consider two variants in this paper: the rules are either
multiset rewriting rules given in the form of u → v, or
communication rules of the form (u, in; v, out) where u, v
are finite multisets. In both cases, the rules are applied in the
maximal parallel manner, that is, as many rules are applied in
each region as possible. The end of the computation is defined
by halting: the computation finishes when no more rules can
be applied in any of the regions. The result is a number, the
number of objects in a membrane labeled as output.

A P system of degree n ≥ 1 is a construct

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, out)

where
• O is an alphabet of objects,
• µ is a membrane structure of the n membranes. The out-

most membrane which is unique and usually labeled with
1, is called the skin membrane, and the membrane struc-
ture is denoted by a sequence of matching parentheses
where the matching pairs have the same label as the
membranes they represent, see Figure 1 for an example.

• wi ∈ M(O), 1 ≤ i ≤ n, are the initial contents of the n
regions.

• Ri, 1 ≤ i ≤ n, are the sets of evolution or communica-
tion rules associated to the regions, and

• out ∈ {1, . . . , n} is the label of the output membrane.
As mentioned above, we consider two types of P systems

in this paper. In the case of rewriting P systems, the rules

Fig. 1. A membrane structure with the skin membrane labeled as 1, and the
corresponding tree representation. It can also be represented by a string of
matching parentheses as [1 [2 ] [3 [4 [5 ] [6 ] ] [7 ] ] ].

of the set R are of the form u → v where u ∈ M(O) and
v ∈ M(O × TAR) with TAR = {here, out} ∪ {inj | 1 ≤
j ≤ n}. In the case of antiport P systems, the rules don’t
allow the changing of the objects only their movement between
the regions, they are of the form (u, in; v, out) where u, v ∈
M(O).

The rules are applied in the non-deterministic, maximally
parallel manner to the n-tuple of multisets of objects consti-
tuting the configuration of the system. For two configurations
C1 = (u1, . . . , un) and C2 = (v1, . . . , vn), we can obtain
C2 from C1, denoted as C1 ⇒ C2, by applying the rules of
R1, . . . , Rn in the following way.

In the case of rewriting P systems, the application of u →
v ∈ Ri in the region i means to remove the objects of u from
ui and add the new objects specified by v to the system. The
objects of v should be added to the regions as specified by
the target indicators associated to them: If v contains a pair
(a, here) ∈ O×TAR, then a is placed in region i, the region
where the rule is applied. If v contains (a, out) ∈ O × TAR,
then a is added to the contents of the parent region of region i;
if v contains (a, inj) ∈ O×TAR for some region j which is
contained inside the region i (so region i is the parent region
of region j), then a is added to the contents of region j.

In the case of antiport systems, the application of
(u, in; v, out) ∈ Ri in region i means to move the objects
of u from the parent region into region i, and simultaneously,
to move the objects of v into the parent region.

The n-tuple (w1, . . . , wn) is the initial configuration of Π.
The objects evolve simultaneously, and the rules by which

they evolve are chosen nondeterministically, but in a max-
imally parallel manner. This means, that in each region,
objects are assigned to rules, nondeterministically choosing
the rules and the objects assigned to each rule, but in such
a way that no further rule can be applied to the remaining
objects. A rule can be applied in the same step more than
once, only the number of occurrences of objects matters.
Objects which remain unassigned, appear unchanged in the
next configuration.

A sequence of transitions between configurations is called
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of the set R are of the form u → v where u ∈ M(O) and
v ∈ M(O × TAR) with TAR = {here, out} ∪ {inj | 1 ≤
j ≤ n}. In the case of antiport P systems, the rules don’t
allow the changing of the objects only their movement between
the regions, they are of the form (u, in; v, out) where u, v ∈
M(O).

The rules are applied in the non-deterministic, maximally
parallel manner to the n-tuple of multisets of objects consti-
tuting the configuration of the system. For two configurations
C1 = (u1, . . . , un) and C2 = (v1, . . . , vn), we can obtain
C2 from C1, denoted as C1 ⇒ C2, by applying the rules of
R1, . . . , Rn in the following way.

In the case of rewriting P systems, the application of u →
v ∈ Ri in the region i means to remove the objects of u from
ui and add the new objects specified by v to the system. The
objects of v should be added to the regions as specified by
the target indicators associated to them: If v contains a pair
(a, here) ∈ O×TAR, then a is placed in region i, the region
where the rule is applied. If v contains (a, out) ∈ O × TAR,
then a is added to the contents of the parent region of region i;
if v contains (a, inj) ∈ O×TAR for some region j which is
contained inside the region i (so region i is the parent region
of region j), then a is added to the contents of region j.

In the case of antiport systems, the application of
(u, in; v, out) ∈ Ri in region i means to move the objects
of u from the parent region into region i, and simultaneously,
to move the objects of v into the parent region.

The n-tuple (w1, . . . , wn) is the initial configuration of Π.
The objects evolve simultaneously, and the rules by which

they evolve are chosen nondeterministically, but in a max-
imally parallel manner. This means, that in each region,
objects are assigned to rules, nondeterministically choosing
the rules and the objects assigned to each rule, but in such
a way that no further rule can be applied to the remaining
objects. A rule can be applied in the same step more than
once, only the number of occurrences of objects matters.
Objects which remain unassigned, appear unchanged in the
next configuration.

A sequence of transitions between configurations is called
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of the set R are of the form u → v where u ∈ M(O) and
v ∈ M(O × TAR) with TAR = {here, out} ∪ {inj | 1 ≤
j ≤ n}. In the case of antiport P systems, the rules don’t
allow the changing of the objects only their movement between
the regions, they are of the form (u, in; v, out) where u, v ∈
M(O).

The rules are applied in the non-deterministic, maximally
parallel manner to the n-tuple of multisets of objects consti-
tuting the configuration of the system. For two configurations
C1 = (u1, . . . , un) and C2 = (v1, . . . , vn), we can obtain
C2 from C1, denoted as C1 ⇒ C2, by applying the rules of
R1, . . . , Rn in the following way.

In the case of rewriting P systems, the application of u →
v ∈ Ri in the region i means to remove the objects of u from
ui and add the new objects specified by v to the system. The
objects of v should be added to the regions as specified by
the target indicators associated to them: If v contains a pair
(a, here) ∈ O×TAR, then a is placed in region i, the region
where the rule is applied. If v contains (a, out) ∈ O × TAR,
then a is added to the contents of the parent region of region i;
if v contains (a, inj) ∈ O×TAR for some region j which is
contained inside the region i (so region i is the parent region
of region j), then a is added to the contents of region j.

In the case of antiport systems, the application of
(u, in; v, out) ∈ Ri in region i means to move the objects
of u from the parent region into region i, and simultaneously,
to move the objects of v into the parent region.

The n-tuple (w1, . . . , wn) is the initial configuration of Π.
The objects evolve simultaneously, and the rules by which

they evolve are chosen nondeterministically, but in a max-
imally parallel manner. This means, that in each region,
objects are assigned to rules, nondeterministically choosing
the rules and the objects assigned to each rule, but in such
a way that no further rule can be applied to the remaining
objects. A rule can be applied in the same step more than
once, only the number of occurrences of objects matters.
Objects which remain unassigned, appear unchanged in the
next configuration.

A sequence of transitions between configurations is called
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Fig. 2. The mail system described in Section V.

Clients send messages by adding them to the pool of
messages of their domain. They receive messages from the
pool of their domain and store them in their mailbox. Message
stores are represented by sub-solutions.

The movement of messages are performed by reaction rules
of the form

replace A : 〈msg, ωA〉, B : 〈ωB〉
by A : 〈ωA〉, B : 〈msg, ωB〉 if Cond.

The send molecule sends the messages from the client to
the pool, recv gets the messages from the pool and places them
inside the message box of the client, put forwards messages
to the network, get receives messages from the network.

senddi
= replace ToSenddi

: 〈msg, ωt〉, Poold : 〈ωp〉
by ToSenddi

: 〈ωt〉, Poold, : 〈msg, ωp〉

recvdi = replace Poold : 〈msg, ωp〉,MBoxdi : 〈ωb〉
by Poold : 〈ωp〉,MBoxdi

: 〈msg, ωb〉
if recipient(msg) = i

putd = replace Poold : 〈msg, ωp, 〉, Network : 〈ωn〉
by Poold : 〈ωp〉, Network : 〈msg, ωn〉

if recipientDomain(msg) �= d

getd = replace Network : 〈msg, ωn〉, Poold : 〈ωp〉
by Network : 〈ωn〉, Poold : 〈msg, ωp〉

if recipientDomain(msg) = d

The solution representing the mail system contains the
above described molecules together with sub-solutions repre-
senting the messages to be sent and received (called ToSend
and MBox, respectively) for each user, A1, A2, A3, and
B1, B2.

MailSystem:
〈sendA1 , recvA1 , T oSendA1 : 〈. . .〉,MBoxA1 : 〈. . .〉,
sendA2 , recvA2 , T oSendA2 : 〈. . .〉,MBoxA2 : 〈. . .〉,
sendA3

, recvA3
, T oSendA3

: 〈. . .〉,MBoxA3
: 〈. . .〉,

putA, getA, PoolA, Network, putB , getB , PoolB ,

Fig. 3. The membrane mail system corresponding to the system of Figure 2

sendB1
, recvB1

, T oSendB1
: 〈. . .〉,MBoxB1

: 〈. . .〉,
sendB2

, recvB2
, T oSendB2

: 〈. . .〉,MBoxB2
: 〈. . .〉 〉

This chemical solution can be represented by a membrane
system where message stores are represented by membranes,
active molecules (or reactions) are represented by evolution
rules. If we denote the regions as in Figure 3, and messages
addressed to recipient di are represented by objects msgdi

, we
need the following rules:

• RToSenddi
= {msgdj

→ (msgdj
, out)},

• RPooldi
= {msgd′

j
→ (msgd′

j
, out),

msgdi
→ (msgdi

, inMBoxi
)}, and

• RNetwork = {msgdi → (msgdi , inPoold)}.
The rules corresponding to the “outbox” of users send the

messages to their pool, and the rules corresponding to the
pools, PoolA and PoolB , place them into the MBox of the
user. If a message is addressed to a user belonging to the other
pool, then it is sent to the network which forwards it to the
corresponding message pool.

B. Describing membrane systems by chemical programs

Let us know continue with considerations in the “opposite
direction”, namely, with the study of how membrane compu-
tations could be described with a chemical program. To this
aim, we summarize the results contained in [8].

First we introduce some elements of the γ-calculus of
Banâtre and his coauthors, see for example [4]. Similarly to the
chemical programming language used in the previous section,
it is a higher order extension of the Gamma formalism. We
need it in order to be able to have a calculus, a mathematically
precise description of chemical computations.

The main rule of the calculus is the reaction rule

γ(P )[C].M,N → φM

where P is a pattern, C is a condition, M is the result, and
N is the multiset to which the rule is applied. Its application
produces φM , where match(P,N) = φ and φ assigns values
to variables in such a way that φ(C) is true.

Without further clarifications, let us look at the following
example. The γ-term

γ(x, y)[x ≤ y].y, (3, 4)
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a computation. A computation is successful if it halts, that is,
if it reaches a configuration where no application of any of
the rules are possible. In this case, the result is the multiset
of objects which is present in the output region in the halting
configuration.

As an example, let us consider how the dining philosopher
problem can be represented in the P system framework.

Example 4: Consider the antiport P system

Π = (O,µ,w0, w1, . . . , w5, R0, R1, . . . , R5, out)

where O = {ti, ei, fi | 1 ≤ i ≤ 5}, w0 = e1f1 . . . e5f5,
wi = ti, 1 ≤ i ≤ 5. The sets of rules are defined as R0 = ∅,
and for 1 ≤ i ≤ 5 as

Ri = {(eififi+1 mod 5, in; ti, out), (ei, in; ei, out),

(ti, in; eififi+1 mod 5, out), (ti, in; ti, out)}.

There are five regions, labeled by 1 to 5 in this system
enclosed in a sixth one, the skin membrane, which is labeled
by 0. The initial configuration, when the enclosed regions
i, 1 ≤ i ≤ 5 contain the objects ti, 1 ≤ i ≤ 5, respectively,
corresponds to the situation when all philosophers are thinking.
Applying the rule (ti, in; ti, out), the ith philosopher may keep
thinking, or applying the rule (eififi+1 mod 5, in; ti, out), he
may start eating.

As the properties of parallel execution, mutual exclusion,
and atomic capture also hold in the case of membrane systems,
the above given description of the dining philosophers also
have the same desirable properties as the HOCL description
given in the previous section.

Let us consider now an example from [12]. To this aim
we introduce two features that we did not consider so far:
priorities among the rules, and membrane dissolution.

Example 5: Let Π the following system of three membranes.

Π = (O, [1 [2 [3 ] ] ], ∅, ∅, af,R1, R2, R3, 1)

where O = {a, b, d, e, f}, and the sets of rules are defined as

R1 = {d → ∅},
R2 = {b → d, d → de} ∪ {ff → f > f → δ},
R3 = {a → ab, a → bδ, f → ff}.

Priorities are introduced in the rule set R2, denoted by the
relation ff → f > f → δ, which means that as long as
the rule ff → f is applicable, f → δ cannot be applied.
Membrane dissolution is also introduced here by the symbol
δ. When the rule f → δ is used, the corresponding membrane
(the membrane surrounding region 2 in this case) is dis-
solved/removed, and the objects it contains become elements
of the parent region (region 1 in this case).

The computation of Π starts in the initial configuration
(∅, ∅, af). Applying the rules a → ab and f → ff of R3,
we get (∅, ∅, abff) after one computational step. Repeating
this for another k − 2 steps, we get

(∅, ∅, abff) ⇒ . . . ⇒ (∅, ∅, abk−1f2k−1

).

Now, if we apply a → bδ instead of a → ab, the membrane de-
limiting region 3 is dissolved, so we arrive to the configuration

(∅, bkf2k). Next, we can apply the rules of R2 to the bs and
fs, resulting in (∅, dkf2k−1

) after the next step, by replacing
all bs with ds and halving the number of fs in parallel. Note
that as long as there are more than two f symbols, the rule
f → δ cannot be applied, because ff → f has higher priority.
Applying d → de and ff → f as long as possible, we obtain

(∅, dkekf2k−2

) ⇒ (∅, dke2kf2k−3

) ⇒ . . . ⇒ (∅, dke(k−1)kf)

and then (dkekk) by applying the dissolution rule f → δ. Now
if the rule of R1 is applied erasing all d symbols, we obtain
the configuration (ek

2

), and the system halts. The result of
this computation is the number k2. We can observe that the
number k2 can be computed by the system for any k in a
similar manner, thus, the set of numbers computed by Π is
the set N(Π) = {k2 | k ≥ 1}.

From a theoretical point of view membrane systems are
both powerful and efficient computational devices. Powerful,
as many of their variants are computationally complete, that
is, equivalent in computational power to Turing machines, and
efficient as, due to their parallelity and “chemical nature”, they
are able to provide efficient solutions to computationally hard
(typically NP complete, or even PSPACE complete) problems.
More details and further references can be found in [13].

V. CHEMICAL PROGRAMS AND MEMBRANE SYSTEMS

As we have seen in the previous sections, membrane sys-
tems and programs written in the Gamma language are closely
related. This is not surprising because they both provide a re-
alization of what we call the chemical paradigm of computing.
They both work with symbolic chemical solutions which are
represented by multisets, containing molecules which interact
freely according to given reaction rules, resulting in a parallel,
nondeterministic, distributed model. In this section we turn to
the demonstration of links between the two formalisms.

A. Describing chemical programs by membranes systems

First we demonstrate how membrane systems could mimic
the behavior of systems which are described by chemical pro-
grams. To this aim, we review the approach of [10], recalling
an example from [1] which gives the chemical description of
a mail system.

The mail system (see Figure 2) is described by a solution.
Messages exchanged between clients are represented by basic
molecules.

• Solutions named ToSenddi
contain the messages to be

sent by the client i of domain d.
• Solutions namedMboxdi contain the messages received

by the client i of domain d.
• Solutions named Poold contain the messages that the

server of domain d must take care of.
• The solution named Network represents the global net-

work interconnecting domains.
• A client i in domain d is represented by two active

molecules senddi and recvdi .
• A server of a domain d is represented by two active

molecules putd and getd.
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may start eating.

As the properties of parallel execution, mutual exclusion,
and atomic capture also hold in the case of membrane systems,
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Membrane dissolution is also introduced here by the symbol
δ. When the rule f → δ is used, the corresponding membrane
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solved/removed, and the objects it contains become elements
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The computation of Π starts in the initial configuration
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) after the next step, by replacing
all bs with ds and halving the number of fs in parallel. Note
that as long as there are more than two f symbols, the rule
f → δ cannot be applied, because ff → f has higher priority.
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this computation is the number k2. We can observe that the
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From a theoretical point of view membrane systems are
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as many of their variants are computationally complete, that
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are able to provide efficient solutions to computationally hard
(typically NP complete, or even PSPACE complete) problems.
More details and further references can be found in [13].
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related. This is not surprising because they both provide a re-
alization of what we call the chemical paradigm of computing.
They both work with symbolic chemical solutions which are
represented by multisets, containing molecules which interact
freely according to given reaction rules, resulting in a parallel,
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the behavior of systems which are described by chemical pro-
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fs, resulting in (∅, dkf2k−1

) after the next step, by replacing
all bs with ds and halving the number of fs in parallel. Note
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(∅, dkekf2k−2

) ⇒ (∅, dke2kf2k−3

) ⇒ . . . ⇒ (∅, dke(k−1)kf)
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), and the system halts. The result of
this computation is the number k2. We can observe that the
number k2 can be computed by the system for any k in a
similar manner, thus, the set of numbers computed by Π is
the set N(Π) = {k2 | k ≥ 1}.

From a theoretical point of view membrane systems are
both powerful and efficient computational devices. Powerful,
as many of their variants are computationally complete, that
is, equivalent in computational power to Turing machines, and
efficient as, due to their parallelity and “chemical nature”, they
are able to provide efficient solutions to computationally hard
(typically NP complete, or even PSPACE complete) problems.
More details and further references can be found in [13].

V. CHEMICAL PROGRAMS AND MEMBRANE SYSTEMS

As we have seen in the previous sections, membrane sys-
tems and programs written in the Gamma language are closely
related. This is not surprising because they both provide a re-
alization of what we call the chemical paradigm of computing.
They both work with symbolic chemical solutions which are
represented by multisets, containing molecules which interact
freely according to given reaction rules, resulting in a parallel,
nondeterministic, distributed model. In this section we turn to
the demonstration of links between the two formalisms.

A. Describing chemical programs by membranes systems

First we demonstrate how membrane systems could mimic
the behavior of systems which are described by chemical pro-
grams. To this aim, we review the approach of [10], recalling
an example from [1] which gives the chemical description of
a mail system.

The mail system (see Figure 2) is described by a solution.
Messages exchanged between clients are represented by basic
molecules.

• Solutions named ToSenddi
contain the messages to be

sent by the client i of domain d.
• Solutions namedMboxdi contain the messages received

by the client i of domain d.
• Solutions named Poold contain the messages that the

server of domain d must take care of.
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work interconnecting domains.
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Fig. 2. The mail system described in Section V.

Clients send messages by adding them to the pool of
messages of their domain. They receive messages from the
pool of their domain and store them in their mailbox. Message
stores are represented by sub-solutions.

The movement of messages are performed by reaction rules
of the form

replace A : 〈msg, ωA〉, B : 〈ωB〉
by A : 〈ωA〉, B : 〈msg, ωB〉 if Cond.

The send molecule sends the messages from the client to
the pool, recv gets the messages from the pool and places them
inside the message box of the client, put forwards messages
to the network, get receives messages from the network.

senddi
= replace ToSenddi

: 〈msg, ωt〉, Poold : 〈ωp〉
by ToSenddi

: 〈ωt〉, Poold, : 〈msg, ωp〉

recvdi = replace Poold : 〈msg, ωp〉,MBoxdi : 〈ωb〉
by Poold : 〈ωp〉,MBoxdi

: 〈msg, ωb〉
if recipient(msg) = i

putd = replace Poold : 〈msg, ωp, 〉, Network : 〈ωn〉
by Poold : 〈ωp〉, Network : 〈msg, ωn〉

if recipientDomain(msg) �= d

getd = replace Network : 〈msg, ωn〉, Poold : 〈ωp〉
by Network : 〈ωn〉, Poold : 〈msg, ωp〉

if recipientDomain(msg) = d

The solution representing the mail system contains the
above described molecules together with sub-solutions repre-
senting the messages to be sent and received (called ToSend
and MBox, respectively) for each user, A1, A2, A3, and
B1, B2.

MailSystem:
〈sendA1 , recvA1 , T oSendA1 : 〈. . .〉,MBoxA1 : 〈. . .〉,
sendA2 , recvA2 , T oSendA2 : 〈. . .〉,MBoxA2 : 〈. . .〉,
sendA3

, recvA3
, T oSendA3

: 〈. . .〉,MBoxA3
: 〈. . .〉,

putA, getA, PoolA, Network, putB , getB , PoolB ,

Fig. 3. The membrane mail system corresponding to the system of Figure 2

sendB1
, recvB1

, T oSendB1
: 〈. . .〉,MBoxB1

: 〈. . .〉,
sendB2

, recvB2
, T oSendB2

: 〈. . .〉,MBoxB2
: 〈. . .〉 〉

This chemical solution can be represented by a membrane
system where message stores are represented by membranes,
active molecules (or reactions) are represented by evolution
rules. If we denote the regions as in Figure 3, and messages
addressed to recipient di are represented by objects msgdi

, we
need the following rules:

• RToSenddi
= {msgdj

→ (msgdj
, out)},

• RPooldi
= {msgd′

j
→ (msgd′

j
, out),

msgdi
→ (msgdi

, inMBoxi
)}, and

• RNetwork = {msgdi → (msgdi , inPoold)}.
The rules corresponding to the “outbox” of users send the

messages to their pool, and the rules corresponding to the
pools, PoolA and PoolB , place them into the MBox of the
user. If a message is addressed to a user belonging to the other
pool, then it is sent to the network which forwards it to the
corresponding message pool.

B. Describing membrane systems by chemical programs

Let us know continue with considerations in the “opposite
direction”, namely, with the study of how membrane compu-
tations could be described with a chemical program. To this
aim, we summarize the results contained in [8].

First we introduce some elements of the γ-calculus of
Banâtre and his coauthors, see for example [4]. Similarly to the
chemical programming language used in the previous section,
it is a higher order extension of the Gamma formalism. We
need it in order to be able to have a calculus, a mathematically
precise description of chemical computations.

The main rule of the calculus is the reaction rule

γ(P )[C].M,N → φM

where P is a pattern, C is a condition, M is the result, and
N is the multiset to which the rule is applied. Its application
produces φM , where match(P,N) = φ and φ assigns values
to variables in such a way that φ(C) is true.

Without further clarifications, let us look at the following
example. The γ-term

γ(x, y)[x ≤ y].y, (3, 4)
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a computation. A computation is successful if it halts, that is,
if it reaches a configuration where no application of any of
the rules are possible. In this case, the result is the multiset
of objects which is present in the output region in the halting
configuration.

As an example, let us consider how the dining philosopher
problem can be represented in the P system framework.

Example 4: Consider the antiport P system

Π = (O,µ,w0, w1, . . . , w5, R0, R1, . . . , R5, out)

where O = {ti, ei, fi | 1 ≤ i ≤ 5}, w0 = e1f1 . . . e5f5,
wi = ti, 1 ≤ i ≤ 5. The sets of rules are defined as R0 = ∅,
and for 1 ≤ i ≤ 5 as

Ri = {(eififi+1 mod 5, in; ti, out), (ei, in; ei, out),

(ti, in; eififi+1 mod 5, out), (ti, in; ti, out)}.

There are five regions, labeled by 1 to 5 in this system
enclosed in a sixth one, the skin membrane, which is labeled
by 0. The initial configuration, when the enclosed regions
i, 1 ≤ i ≤ 5 contain the objects ti, 1 ≤ i ≤ 5, respectively,
corresponds to the situation when all philosophers are thinking.
Applying the rule (ti, in; ti, out), the ith philosopher may keep
thinking, or applying the rule (eififi+1 mod 5, in; ti, out), he
may start eating.

As the properties of parallel execution, mutual exclusion,
and atomic capture also hold in the case of membrane systems,
the above given description of the dining philosophers also
have the same desirable properties as the HOCL description
given in the previous section.

Let us consider now an example from [12]. To this aim
we introduce two features that we did not consider so far:
priorities among the rules, and membrane dissolution.

Example 5: Let Π the following system of three membranes.

Π = (O, [1 [2 [3 ] ] ], ∅, ∅, af,R1, R2, R3, 1)

where O = {a, b, d, e, f}, and the sets of rules are defined as

R1 = {d → ∅},
R2 = {b → d, d → de} ∪ {ff → f > f → δ},
R3 = {a → ab, a → bδ, f → ff}.

Priorities are introduced in the rule set R2, denoted by the
relation ff → f > f → δ, which means that as long as
the rule ff → f is applicable, f → δ cannot be applied.
Membrane dissolution is also introduced here by the symbol
δ. When the rule f → δ is used, the corresponding membrane
(the membrane surrounding region 2 in this case) is dis-
solved/removed, and the objects it contains become elements
of the parent region (region 1 in this case).

The computation of Π starts in the initial configuration
(∅, ∅, af). Applying the rules a → ab and f → ff of R3,
we get (∅, ∅, abff) after one computational step. Repeating
this for another k − 2 steps, we get

(∅, ∅, abff) ⇒ . . . ⇒ (∅, ∅, abk−1f2k−1

).

Now, if we apply a → bδ instead of a → ab, the membrane de-
limiting region 3 is dissolved, so we arrive to the configuration

(∅, bkf2k). Next, we can apply the rules of R2 to the bs and
fs, resulting in (∅, dkf2k−1

) after the next step, by replacing
all bs with ds and halving the number of fs in parallel. Note
that as long as there are more than two f symbols, the rule
f → δ cannot be applied, because ff → f has higher priority.
Applying d → de and ff → f as long as possible, we obtain

(∅, dkekf2k−2

) ⇒ (∅, dke2kf2k−3

) ⇒ . . . ⇒ (∅, dke(k−1)kf)

and then (dkekk) by applying the dissolution rule f → δ. Now
if the rule of R1 is applied erasing all d symbols, we obtain
the configuration (ek

2

), and the system halts. The result of
this computation is the number k2. We can observe that the
number k2 can be computed by the system for any k in a
similar manner, thus, the set of numbers computed by Π is
the set N(Π) = {k2 | k ≥ 1}.

From a theoretical point of view membrane systems are
both powerful and efficient computational devices. Powerful,
as many of their variants are computationally complete, that
is, equivalent in computational power to Turing machines, and
efficient as, due to their parallelity and “chemical nature”, they
are able to provide efficient solutions to computationally hard
(typically NP complete, or even PSPACE complete) problems.
More details and further references can be found in [13].
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tems and programs written in the Gamma language are closely
related. This is not surprising because they both provide a re-
alization of what we call the chemical paradigm of computing.
They both work with symbolic chemical solutions which are
represented by multisets, containing molecules which interact
freely according to given reaction rules, resulting in a parallel,
nondeterministic, distributed model. In this section we turn to
the demonstration of links between the two formalisms.

A. Describing chemical programs by membranes systems

First we demonstrate how membrane systems could mimic
the behavior of systems which are described by chemical pro-
grams. To this aim, we review the approach of [10], recalling
an example from [1] which gives the chemical description of
a mail system.

The mail system (see Figure 2) is described by a solution.
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priorities among the rules, and membrane dissolution.
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Π = (O, [1 [2 [3 ] ] ], ∅, ∅, af,R1, R2, R3, 1)

where O = {a, b, d, e, f}, and the sets of rules are defined as

R1 = {d → ∅},
R2 = {b → d, d → de} ∪ {ff → f > f → δ},
R3 = {a → ab, a → bδ, f → ff}.

Priorities are introduced in the rule set R2, denoted by the
relation ff → f > f → δ, which means that as long as
the rule ff → f is applicable, f → δ cannot be applied.
Membrane dissolution is also introduced here by the symbol
δ. When the rule f → δ is used, the corresponding membrane
(the membrane surrounding region 2 in this case) is dis-
solved/removed, and the objects it contains become elements
of the parent region (region 1 in this case).

The computation of Π starts in the initial configuration
(∅, ∅, af). Applying the rules a → ab and f → ff of R3,
we get (∅, ∅, abff) after one computational step. Repeating
this for another k − 2 steps, we get

(∅, ∅, abff) ⇒ . . . ⇒ (∅, ∅, abk−1f2k−1

).

Now, if we apply a → bδ instead of a → ab, the membrane de-
limiting region 3 is dissolved, so we arrive to the configuration

(∅, bkf2k). Next, we can apply the rules of R2 to the bs and
fs, resulting in (∅, dkf2k−1

) after the next step, by replacing
all bs with ds and halving the number of fs in parallel. Note
that as long as there are more than two f symbols, the rule
f → δ cannot be applied, because ff → f has higher priority.
Applying d → de and ff → f as long as possible, we obtain

(∅, dkekf2k−2

) ⇒ (∅, dke2kf2k−3

) ⇒ . . . ⇒ (∅, dke(k−1)kf)

and then (dkekk) by applying the dissolution rule f → δ. Now
if the rule of R1 is applied erasing all d symbols, we obtain
the configuration (ek

2

), and the system halts. The result of
this computation is the number k2. We can observe that the
number k2 can be computed by the system for any k in a
similar manner, thus, the set of numbers computed by Π is
the set N(Π) = {k2 | k ≥ 1}.

From a theoretical point of view membrane systems are
both powerful and efficient computational devices. Powerful,
as many of their variants are computationally complete, that
is, equivalent in computational power to Turing machines, and
efficient as, due to their parallelity and “chemical nature”, they
are able to provide efficient solutions to computationally hard
(typically NP complete, or even PSPACE complete) problems.
More details and further references can be found in [13].

V. CHEMICAL PROGRAMS AND MEMBRANE SYSTEMS

As we have seen in the previous sections, membrane sys-
tems and programs written in the Gamma language are closely
related. This is not surprising because they both provide a re-
alization of what we call the chemical paradigm of computing.
They both work with symbolic chemical solutions which are
represented by multisets, containing molecules which interact
freely according to given reaction rules, resulting in a parallel,
nondeterministic, distributed model. In this section we turn to
the demonstration of links between the two formalisms.

A. Describing chemical programs by membranes systems

First we demonstrate how membrane systems could mimic
the behavior of systems which are described by chemical pro-
grams. To this aim, we review the approach of [10], recalling
an example from [1] which gives the chemical description of
a mail system.

The mail system (see Figure 2) is described by a solution.
Messages exchanged between clients are represented by basic
molecules.

• Solutions named ToSenddi
contain the messages to be

sent by the client i of domain d.
• Solutions namedMboxdi contain the messages received

by the client i of domain d.
• Solutions named Poold contain the messages that the

server of domain d must take care of.
• The solution named Network represents the global net-

work interconnecting domains.
• A client i in domain d is represented by two active

molecules senddi and recvdi .
• A server of a domain d is represented by two active

molecules putd and getd.
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Factorization models for context-aware
recommendations

Balázs Hidasi

Abstract—The field of implicit feedback based recommender
algorithms have gained increased interest in the last few years,
driven by the need of many practical applications where no ex-
plicit feedback is available. The main difficulty of this recommen-
dation task is the lack of information on the negative preferences
of the users that may lead to inaccurate recommendations and
scalability issues. In this paper, we adopt the use of context-
awareness to improve the accuracy of implicit models—a model
extension technique that was applied successfully for explicit
algorithms. We present a modified version of the iTALS algorithm
(coined iTALSx) that uses a different underlying factorization
model. We explore the key differences between these approaches
and conduct experiments on five data sets to experimentally
determine the advantages of the underlying models. We show
that iTALSx outperforms the other method on sparser data sets
and is able to model complex user–item relations with fewer
factors.

Index Terms—context-awareness, implicit feedback, model
comparison, recommender systems, tensor factorization.

I. INTRODUCTION

Recommender systems are information filtering tools that
help users in information overload to find interesting items.
For modeling user preferences, classical approaches either
use item metadata (content based filtering, CBF; [1]), or
user–item interactions (collaborative filtering, CF; [2]). CF
algorithms proved to be more accurate than CBF methods,
if sufficient interaction data (or events) is available [3]. CF
algorithms can be further divided into memory and model
based algorithms. An important subclass of the latter is the
factorization algorithms (e.g. matrix factorization).

Latent factor based CF methods gained popularity due to
their attractive accuracy and scalability [4]. They intend to
capture user preferences by uncovering latent features that
explain the observed user–item events (ratings). Models are
created by the factorization of the partially observed user–
item rating matrix, and the user preferences are approximated
by the scalar product of the user and item factors. Matrix
factorization (MF) methods may differ in the learning method
and the objective function. For learning, MF methods may
apply, e.g., alternating least squares (ALS; [5]), stochastic
gradient [6], or a probabilistic framework [7].

Depending on the nature of the user–item interactions,
recommendation problems can be classified into explicit and
implicit feedback based problems. In the former case, users
provide explicit information on their preferences, typically in
form of ratings. In the latter case, user preferences are captured
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azs.hidasi@gravityrd.com.

seamlessly via user activity. Implicit feedback algorithms use
user interactions like viewing and purchasing retrieved e.g.
from website usage logs. Obviously, implicit feedback data
is less reliable because the presence of an action is only
an uncertain implication that the user likes the item and the
absence of an action rarely means negative preference.

The implicit problem is much more important in practical
applications than the explicit one, because most of the users
of online e-commerce shops or services do not tend to rate
items even if such an option is available[8], because (1) when
purchasing they have no information on their satisfaction rate
(2) they are not motivated to return later to the system to
do so. In such a case, user preferences can only be inferred
by interpreting user actions (also called events). For instance,
a recommender system may consider the navigation to a
particular item page as an implicit sign of preference for
the item [9]. The user history specific to items are thus
considered as implicit feedback on the user’s taste. Note that
the interpretation of implicit feedback data may not necessarily
reflect user preferences which makes the implicit feedback
based preference modeling a much harder task. For instance,
a purchased item could be disappointing for the user, so it
might not mean a positive feedback. The strength of the
events’ indication of preferences varies on a type by type
basis. E.g. purchasing an item is a stronger indicator than
looking at a product page (browsing). Missing navigational
or purchase information can not be interpreted as negative
feedback. The absence of the negative feedback forces us
to use the information stored in the “missing” events. Most
(explicit) algorithms iterate over the known ratings and use
gradient descent to minimize the error function. This is not
applicable in the implicit case as the number of known ratings
is equal to all possible ratings as we should use the “missing”
events as well. Although the explicit feedback problem is
much thoroughly studied research topic, in the last few years
implicit feedback algorithms have gained increased interest
thanks to its practical importance; see [8], [10], [11].

Classical collaborative filtering methods only consider direct
user–item interaction data to create the model. However, we
may have additional information related to items, users or
events, which are together termed contextual information.
Context can be, for instance, the time or location of recommen-
dation. Any additional information to the user–item interaction
can be considered as context. Here we assume that the context
dimensions are event contexts, meaning that their value is not
determined solely by the user or the item; rather it is bound
to the transaction itself. E.g. the time of the event is an event
context, while the genres of the item is not. Integrating context
into the recommender model improves the model capacity and
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reduces to the multiset (4) since in order for φ(x ≤ y) to hold,
match((x, y), (3, 4)) = φ should be such, that φ = {x �→
3, y �→ 4}. This means that φ(y) = 4, thus, the result of the
reaction γ(x, y)[x ≤ y].y, (3, 4) is the multiset (4).

There calculus has several other reduction rules which we do
not discuss here, but we do recall that a replace operator can
also be defined, which behaves similarly to the instruction with
the same name used in the chemical programming language
we saw in the previous sections. This is used in the following
example which calculates the largest prime which is less than
or equal to 6.

Example 6:

largestprime(6) =
let sieve = rep lace (〈x〉, 〈y〉) by 〈x〉 if x div y in
let max = rep lace (〈x〉, 〈y〉) by 〈x〉 if x ≤ y in

〈 〈〈2〉, 〈3〉, . . . , 〈6〉, sieve〉, γ(〈x〉)[true](x,max) 〉

The pattern standing in the last term γ(〈x〉)[true](x,max)
is a solution 〈x〉, which can be only matched by inert so-
lutions, thus, first the prime numbers are selected with the
term sieve, producing the inert solution 〈〈2〉, 〈3〉, 〈5〉, sieve〉
which matches the pattern 〈x〉 in the γ-term, resulting in
〈〈2〉, 〈3〉, 〈5〉, sieve,max〉, and now max chooses the maxi-
mum among them, ending up with 〈〈5〉, sieve,max〉.

Using these ingredients, we can define a γ-term which is
able to “simulate” the computations of a membrane system.
More precisely, for each configuration C of a membrane sys-
tem Π, we can define a term which contains the objects of the
configuration together with replace operators corresponding to
the rules of Π (and several technical details which we don’t
discuss) which enables the reduction in the calculus to proceed
in such a way that it reproduces the results of the maximally
parallel rule application of the P system. Namely, we have the
following theorem, see [8].

Theorem 1: Let Π be a membrane system, and
C0, C1, . . . , Cm be a sequence of configurations denoting a
terminating computation.

Then there exists a γ-term M(Π), and a reduction sequence
M(Π) → M1 → . . . → Ms, such that Ms cannot be further
reduced, and if Cm = (w1, . . . , wn), then for all objects a ∈ O
and regions i, 1 ≤ i ≤ n, Ms contains the same number of
copies of (a, i), as wi contains a.
In effect, the theorem establishes for the sequence
Π0,Π1, . . . ,Πm of P -systems corresponding to the compu-
tation C0, C1, . . . , Cm starting from Π = Π0 a sequence
M(Π) → M1 → . . . → Ms of γ-terms such that there is
an index set 0 < k1 < . . . < kn = s with the property
M(Πj) = Mkj for 1 ≤ j ≤ n.

VI. CONCLUSION

First we have briefly reviewed the chemical computing
paradigm and the notion of membrane systems, then we have
discussed their relationship by describing results from [10]
and [8]. These results represent the first steps in the direction
of establishing the relationship of the two paradigms. This
approach could be interesting from several points of view.
By being able to translate chemical programs to membrane
systems, we could obtain a high level programming language

for the description of membrane algorithms. By being able
to describe membrane computations with a mathematically
precise chemical calculus, we could use it to reason about
the properties of membrane systems in a mathematical way.
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[10] M. Fésüs, Gy. Vaszil, Chemical programming and membrane systems.
In: Proc. 14th International Conference on Membrane Computing,
Institute of Mathematics and Computer Science, Academy of Moldova,
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parallel rule application of the P system. Namely, we have the
following theorem, see [8].
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M(Πj) = Mkj for 1 ≤ j ≤ n.

VI. CONCLUSION
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paradigm and the notion of membrane systems, then we have
discussed their relationship by describing results from [10]
and [8]. These results represent the first steps in the direction
of establishing the relationship of the two paradigms. This
approach could be interesting from several points of view.
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systems, we could obtain a high level programming language
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through the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project
which is co-financed by the European Social Fund.

REFERENCES
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[3] J.-P. Banâtre, P. Fradet, D. Le Métayer: Gamma and the chemical re-
action model: Fifteen years after. In Multiset Processing. Mathematical,
Computer Science, and Molecular Computing Points of View. Volume
2235 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2001, 17–44.
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reduces to the multiset (4) since in order for φ(x ≤ y) to hold,
match((x, y), (3, 4)) = φ should be such, that φ = {x �→
3, y �→ 4}. This means that φ(y) = 4, thus, the result of the
reaction γ(x, y)[x ≤ y].y, (3, 4) is the multiset (4).

There calculus has several other reduction rules which we do
not discuss here, but we do recall that a replace operator can
also be defined, which behaves similarly to the instruction with
the same name used in the chemical programming language
we saw in the previous sections. This is used in the following
example which calculates the largest prime which is less than
or equal to 6.

Example 6:

largestprime(6) =
let sieve = rep lace (〈x〉, 〈y〉) by 〈x〉 if x div y in
let max = rep lace (〈x〉, 〈y〉) by 〈x〉 if x ≤ y in

〈 〈〈2〉, 〈3〉, . . . , 〈6〉, sieve〉, γ(〈x〉)[true](x,max) 〉

The pattern standing in the last term γ(〈x〉)[true](x,max)
is a solution 〈x〉, which can be only matched by inert so-
lutions, thus, first the prime numbers are selected with the
term sieve, producing the inert solution 〈〈2〉, 〈3〉, 〈5〉, sieve〉
which matches the pattern 〈x〉 in the γ-term, resulting in
〈〈2〉, 〈3〉, 〈5〉, sieve,max〉, and now max chooses the maxi-
mum among them, ending up with 〈〈5〉, sieve,max〉.

Using these ingredients, we can define a γ-term which is
able to “simulate” the computations of a membrane system.
More precisely, for each configuration C of a membrane sys-
tem Π, we can define a term which contains the objects of the
configuration together with replace operators corresponding to
the rules of Π (and several technical details which we don’t
discuss) which enables the reduction in the calculus to proceed
in such a way that it reproduces the results of the maximally
parallel rule application of the P system. Namely, we have the
following theorem, see [8].

Theorem 1: Let Π be a membrane system, and
C0, C1, . . . , Cm be a sequence of configurations denoting a
terminating computation.

Then there exists a γ-term M(Π), and a reduction sequence
M(Π) → M1 → . . . → Ms, such that Ms cannot be further
reduced, and if Cm = (w1, . . . , wn), then for all objects a ∈ O
and regions i, 1 ≤ i ≤ n, Ms contains the same number of
copies of (a, i), as wi contains a.
In effect, the theorem establishes for the sequence
Π0,Π1, . . . ,Πm of P -systems corresponding to the compu-
tation C0, C1, . . . , Cm starting from Π = Π0 a sequence
M(Π) → M1 → . . . → Ms of γ-terms such that there is
an index set 0 < k1 < . . . < kn = s with the property
M(Πj) = Mkj for 1 ≤ j ≤ n.

VI. CONCLUSION

First we have briefly reviewed the chemical computing
paradigm and the notion of membrane systems, then we have
discussed their relationship by describing results from [10]
and [8]. These results represent the first steps in the direction
of establishing the relationship of the two paradigms. This
approach could be interesting from several points of view.
By being able to translate chemical programs to membrane
systems, we could obtain a high level programming language

for the description of membrane algorithms. By being able
to describe membrane computations with a mathematically
precise chemical calculus, we could use it to reason about
the properties of membrane systems in a mathematical way.
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Factorization models for context-aware
recommendations

Balázs Hidasi

Abstract—The field of implicit feedback based recommender
algorithms have gained increased interest in the last few years,
driven by the need of many practical applications where no ex-
plicit feedback is available. The main difficulty of this recommen-
dation task is the lack of information on the negative preferences
of the users that may lead to inaccurate recommendations and
scalability issues. In this paper, we adopt the use of context-
awareness to improve the accuracy of implicit models—a model
extension technique that was applied successfully for explicit
algorithms. We present a modified version of the iTALS algorithm
(coined iTALSx) that uses a different underlying factorization
model. We explore the key differences between these approaches
and conduct experiments on five data sets to experimentally
determine the advantages of the underlying models. We show
that iTALSx outperforms the other method on sparser data sets
and is able to model complex user–item relations with fewer
factors.

Index Terms—context-awareness, implicit feedback, model
comparison, recommender systems, tensor factorization.

I. INTRODUCTION

Recommender systems are information filtering tools that
help users in information overload to find interesting items.
For modeling user preferences, classical approaches either
use item metadata (content based filtering, CBF; [1]), or
user–item interactions (collaborative filtering, CF; [2]). CF
algorithms proved to be more accurate than CBF methods,
if sufficient interaction data (or events) is available [3]. CF
algorithms can be further divided into memory and model
based algorithms. An important subclass of the latter is the
factorization algorithms (e.g. matrix factorization).

Latent factor based CF methods gained popularity due to
their attractive accuracy and scalability [4]. They intend to
capture user preferences by uncovering latent features that
explain the observed user–item events (ratings). Models are
created by the factorization of the partially observed user–
item rating matrix, and the user preferences are approximated
by the scalar product of the user and item factors. Matrix
factorization (MF) methods may differ in the learning method
and the objective function. For learning, MF methods may
apply, e.g., alternating least squares (ALS; [5]), stochastic
gradient [6], or a probabilistic framework [7].

Depending on the nature of the user–item interactions,
recommendation problems can be classified into explicit and
implicit feedback based problems. In the former case, users
provide explicit information on their preferences, typically in
form of ratings. In the latter case, user preferences are captured
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seamlessly via user activity. Implicit feedback algorithms use
user interactions like viewing and purchasing retrieved e.g.
from website usage logs. Obviously, implicit feedback data
is less reliable because the presence of an action is only
an uncertain implication that the user likes the item and the
absence of an action rarely means negative preference.

The implicit problem is much more important in practical
applications than the explicit one, because most of the users
of online e-commerce shops or services do not tend to rate
items even if such an option is available[8], because (1) when
purchasing they have no information on their satisfaction rate
(2) they are not motivated to return later to the system to
do so. In such a case, user preferences can only be inferred
by interpreting user actions (also called events). For instance,
a recommender system may consider the navigation to a
particular item page as an implicit sign of preference for
the item [9]. The user history specific to items are thus
considered as implicit feedback on the user’s taste. Note that
the interpretation of implicit feedback data may not necessarily
reflect user preferences which makes the implicit feedback
based preference modeling a much harder task. For instance,
a purchased item could be disappointing for the user, so it
might not mean a positive feedback. The strength of the
events’ indication of preferences varies on a type by type
basis. E.g. purchasing an item is a stronger indicator than
looking at a product page (browsing). Missing navigational
or purchase information can not be interpreted as negative
feedback. The absence of the negative feedback forces us
to use the information stored in the “missing” events. Most
(explicit) algorithms iterate over the known ratings and use
gradient descent to minimize the error function. This is not
applicable in the implicit case as the number of known ratings
is equal to all possible ratings as we should use the “missing”
events as well. Although the explicit feedback problem is
much thoroughly studied research topic, in the last few years
implicit feedback algorithms have gained increased interest
thanks to its practical importance; see [8], [10], [11].

Classical collaborative filtering methods only consider direct
user–item interaction data to create the model. However, we
may have additional information related to items, users or
events, which are together termed contextual information.
Context can be, for instance, the time or location of recommen-
dation. Any additional information to the user–item interaction
can be considered as context. Here we assume that the context
dimensions are event contexts, meaning that their value is not
determined solely by the user or the item; rather it is bound
to the transaction itself. E.g. the time of the event is an event
context, while the genres of the item is not. Integrating context
into the recommender model improves the model capacity and
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