
Crowdsensing Based Public Transport Information Service in Smart Cities
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2014 • VOLUME VI • NUMBER 4 13

INFOCOMMUNICATIONS JOURNAL 1

Crowdsensing Based Public Transport Information
Service in Smart Cities

Károly Farkas, Gábor Fehér, András Benczúr, and Csaba Sidló, Member, IEEE

Abstract—Thanks to the development of technology and the
emergence of intelligent services smart cities promise to their
inhabitants enhanced perception of city life. For example, a
live timetable service of public transportation can increase the
efficiency of travel planning substantially. However, its imple-
mentation in a traditional way requires the deployment of some
costly sensing and tracking infrastructure. Mobile crowdsensing
is an alternative, when the crowd of passengers and their mobile
devices are used to gather data for almost free of charge.

In this paper, we put the emphasis on the introduction of our
crowdsensing based public transport information service, what
we have been developing as a prototype smart city application.
The front-end interface of this service is called TrafficInfo. It
is a simple and easy-to-use Android application which visualizes
real-time public transport information of the given city on Google
Maps. The lively updates of transport schedule information relies
on the automatic stop event detection of public transport vehicles.
TrafficInfo is built upon our Extensible Messaging and Presence
Protocol (XMPP) based communication framework what we
designed to facilitate the development of crowd assisted smart
city applications. The paper introduces shortly this framework,
than describes TrafficInfo in detail together with the developed
stop event detector.

Index Terms—Crowdsensing, Public transport, GTFS, Pub-
lish/subscribe, XMPP, Android, Smart cities

I. INTRODUCTION

SERVICES offered by smart cities aim to support the
everyday life of inhabitants. Unfortunately, the traditional

way of introducing a new service usually implies a huge
investment to deploy the necessary background infrastructure.

One of the most popular city services is public trans-
portation. Maintaining and continuously improving such a
service are imperative in modern cities. However, the imple-
mentation of even a simple feature which extends the basic
service functions can be costly. For example, let’s consider
the replacement of static timetables with lively updated public
transport information service. It requires the deployment of a
vehicle tracking infrastructure consisting of among others GPS
sensors, communication and back-end informatics systems and
user interfaces, which can be an expensive investment.

Manuscript submitted on October 19, 2014, revised on December 8, 2014.
K. Farkas is with the Inter-University Centre for Telecommunications

and Informatics, Debrecen, Hungary and the Budapest University of Tech-
nology and Economics, Budapest, Hungary (corresponding author, e-mail:
farkask@hit.bme.hu).

G. Fehér is with the Inter-University Centre for Telecommunications and
Informatics, Debrecen, Hungary and the Budapest University of Technology
and Economics, Budapest, Hungary (e-mail: feher@tmit.bme.hu).

A. Benczúr and Cs. Sidló are with the University of Debrecen,
Hungary and the Institute for Computer Science and Control, Hungar-
ian Academy of Sciences (MTA SZTAKI), Budapest, Hungary (e-mail:
benczur@info.ilab.sztaki.hu, sidlo@sztaki.hu).

An alternative approach to collect real-time tracking data is
exploiting the power of the crowd via participatory sensing
or often called mobile crowdsensing1 [1], which does not
call for such an investment. In this scenario (see Fig. 1),
the passengers’ mobile devices and their built-in sensors, or
the passengers themselves via reporting incidents, are used to
generate the monitoring data for vehicle tracking and send
instant route information to the service provider in real-
time. The service provider then aggregates, cleans, analyzes
the data gathered, and derives and disseminates the lively
updates. The sensing task is carried out by the built-in and
ubiquitous sensors of the smartphones either in participatory or
opportunistic way depending on whether the user is involved
or not in data collection. Every traveler can contribute to this
data harvesting task. Thus, passengers waiting for a ride can
report the line number with a timestamp of every arriving
public transport vehicle at a stop during the waiting period.
On the other hand, onboard passengers can be used to gather
and report actual position information of the moving vehicle
and detect halt events at the stops.

Fig. 1. Real-time public transport information service based on mobile
crowdsensing

In this paper, we focus on the introduction of our crowdsens-
ing based public transport information service, what we have
been developing as a prototype smart city application. The
front-end interface of this service, called TrafficInfo, is a sim-
ple and easy-to-use Android application which visualizes real-
time public transport information of the given city on Google
Maps. It is built upon our Extensible Messaging and Presence
Protocol (XMPP) [2] based communication framework [3]

1We use the terms crowdsensing, crowdsourcing and participatory sensing
interchangeably in this paper.

INFOCOMMUNICATIONS JOURNAL 1

Crowdsensing Based Public Transport Information
Service in Smart Cities

Károly Farkas, Gábor Fehér, András Benczúr, and Csaba Sidló, Member, IEEE

Abstract—Thanks to the development of technology and the
emergence of intelligent services smart cities promise to their
inhabitants enhanced perception of city life. For example, a
live timetable service of public transportation can increase the
efficiency of travel planning substantially. However, its imple-
mentation in a traditional way requires the deployment of some
costly sensing and tracking infrastructure. Mobile crowdsensing
is an alternative, when the crowd of passengers and their mobile
devices are used to gather data for almost free of charge.

In this paper, we put the emphasis on the introduction of our
crowdsensing based public transport information service, what
we have been developing as a prototype smart city application.
The front-end interface of this service is called TrafficInfo. It
is a simple and easy-to-use Android application which visualizes
real-time public transport information of the given city on Google
Maps. The lively updates of transport schedule information relies
on the automatic stop event detection of public transport vehicles.
TrafficInfo is built upon our Extensible Messaging and Presence
Protocol (XMPP) based communication framework what we
designed to facilitate the development of crowd assisted smart
city applications. The paper introduces shortly this framework,
than describes TrafficInfo in detail together with the developed
stop event detector.

Index Terms—Crowdsensing, Public transport, GTFS, Pub-
lish/subscribe, XMPP, Android, Smart cities

I. INTRODUCTION

SERVICES offered by smart cities aim to support the
everyday life of inhabitants. Unfortunately, the traditional

way of introducing a new service usually implies a huge
investment to deploy the necessary background infrastructure.

One of the most popular city services is public trans-
portation. Maintaining and continuously improving such a
service are imperative in modern cities. However, the imple-
mentation of even a simple feature which extends the basic
service functions can be costly. For example, let’s consider
the replacement of static timetables with lively updated public
transport information service. It requires the deployment of a
vehicle tracking infrastructure consisting of among others GPS
sensors, communication and back-end informatics systems and
user interfaces, which can be an expensive investment.

Manuscript submitted on October 19, 2014, revised on December 8, 2014.
K. Farkas is with the Inter-University Centre for Telecommunications

and Informatics, Debrecen, Hungary and the Budapest University of Tech-
nology and Economics, Budapest, Hungary (corresponding author, e-mail:
farkask@hit.bme.hu).

G. Fehér is with the Inter-University Centre for Telecommunications and
Informatics, Debrecen, Hungary and the Budapest University of Technology
and Economics, Budapest, Hungary (e-mail: feher@tmit.bme.hu).

A. Benczúr and Cs. Sidló are with the University of Debrecen,
Hungary and the Institute for Computer Science and Control, Hungar-
ian Academy of Sciences (MTA SZTAKI), Budapest, Hungary (e-mail:
benczur@info.ilab.sztaki.hu, sidlo@sztaki.hu).

An alternative approach to collect real-time tracking data is
exploiting the power of the crowd via participatory sensing
or often called mobile crowdsensing1 [1], which does not
call for such an investment. In this scenario (see Fig. 1),
the passengers’ mobile devices and their built-in sensors, or
the passengers themselves via reporting incidents, are used to
generate the monitoring data for vehicle tracking and send
instant route information to the service provider in real-
time. The service provider then aggregates, cleans, analyzes
the data gathered, and derives and disseminates the lively
updates. The sensing task is carried out by the built-in and
ubiquitous sensors of the smartphones either in participatory or
opportunistic way depending on whether the user is involved
or not in data collection. Every traveler can contribute to this
data harvesting task. Thus, passengers waiting for a ride can
report the line number with a timestamp of every arriving
public transport vehicle at a stop during the waiting period.
On the other hand, onboard passengers can be used to gather
and report actual position information of the moving vehicle
and detect halt events at the stops.

Fig. 1. Real-time public transport information service based on mobile
crowdsensing

In this paper, we focus on the introduction of our crowdsens-
ing based public transport information service, what we have
been developing as a prototype smart city application. The
front-end interface of this service, called TrafficInfo, is a sim-
ple and easy-to-use Android application which visualizes real-
time public transport information of the given city on Google
Maps. It is built upon our Extensible Messaging and Presence
Protocol (XMPP) [2] based communication framework [3]

1We use the terms crowdsensing, crowdsourcing and participatory sensing
interchangeably in this paper.

INFOCOMMUNICATIONS JOURNAL 1

Crowdsensing Based Public Transport Information
Service in Smart Cities

Károly Farkas, Gábor Fehér, András Benczúr, and Csaba Sidló, Member, IEEE

Abstract—Thanks to the development of technology and the
emergence of intelligent services smart cities promise to their
inhabitants enhanced perception of city life. For example, a
live timetable service of public transportation can increase the
efficiency of travel planning substantially. However, its imple-
mentation in a traditional way requires the deployment of some
costly sensing and tracking infrastructure. Mobile crowdsensing
is an alternative, when the crowd of passengers and their mobile
devices are used to gather data for almost free of charge.

In this paper, we put the emphasis on the introduction of our
crowdsensing based public transport information service, what
we have been developing as a prototype smart city application.
The front-end interface of this service is called TrafficInfo. It
is a simple and easy-to-use Android application which visualizes
real-time public transport information of the given city on Google
Maps. The lively updates of transport schedule information relies
on the automatic stop event detection of public transport vehicles.
TrafficInfo is built upon our Extensible Messaging and Presence
Protocol (XMPP) based communication framework what we
designed to facilitate the development of crowd assisted smart
city applications. The paper introduces shortly this framework,
than describes TrafficInfo in detail together with the developed
stop event detector.

Index Terms—Crowdsensing, Public transport, GTFS, Pub-
lish/subscribe, XMPP, Android, Smart cities

I. INTRODUCTION

SERVICES offered by smart cities aim to support the
everyday life of inhabitants. Unfortunately, the traditional

way of introducing a new service usually implies a huge
investment to deploy the necessary background infrastructure.

One of the most popular city services is public trans-
portation. Maintaining and continuously improving such a
service are imperative in modern cities. However, the imple-
mentation of even a simple feature which extends the basic
service functions can be costly. For example, let’s consider
the replacement of static timetables with lively updated public
transport information service. It requires the deployment of a
vehicle tracking infrastructure consisting of among others GPS
sensors, communication and back-end informatics systems and
user interfaces, which can be an expensive investment.

Manuscript submitted on October 19, 2014, revised on December 8, 2014.
K. Farkas is with the Inter-University Centre for Telecommunications

and Informatics, Debrecen, Hungary and the Budapest University of Tech-
nology and Economics, Budapest, Hungary (corresponding author, e-mail:
farkask@hit.bme.hu).

G. Fehér is with the Inter-University Centre for Telecommunications and
Informatics, Debrecen, Hungary and the Budapest University of Technology
and Economics, Budapest, Hungary (e-mail: feher@tmit.bme.hu).

A. Benczúr and Cs. Sidló are with the University of Debrecen,
Hungary and the Institute for Computer Science and Control, Hungar-
ian Academy of Sciences (MTA SZTAKI), Budapest, Hungary (e-mail:
benczur@info.ilab.sztaki.hu, sidlo@sztaki.hu).

An alternative approach to collect real-time tracking data is
exploiting the power of the crowd via participatory sensing
or often called mobile crowdsensing1 [1], which does not
call for such an investment. In this scenario (see Fig. 1),
the passengers’ mobile devices and their built-in sensors, or
the passengers themselves via reporting incidents, are used to
generate the monitoring data for vehicle tracking and send
instant route information to the service provider in real-
time. The service provider then aggregates, cleans, analyzes
the data gathered, and derives and disseminates the lively
updates. The sensing task is carried out by the built-in and
ubiquitous sensors of the smartphones either in participatory or
opportunistic way depending on whether the user is involved
or not in data collection. Every traveler can contribute to this
data harvesting task. Thus, passengers waiting for a ride can
report the line number with a timestamp of every arriving
public transport vehicle at a stop during the waiting period.
On the other hand, onboard passengers can be used to gather
and report actual position information of the moving vehicle
and detect halt events at the stops.

Fig. 1. Real-time public transport information service based on mobile
crowdsensing

In this paper, we focus on the introduction of our crowdsens-
ing based public transport information service, what we have
been developing as a prototype smart city application. The
front-end interface of this service, called TrafficInfo, is a sim-
ple and easy-to-use Android application which visualizes real-
time public transport information of the given city on Google
Maps. It is built upon our Extensible Messaging and Presence
Protocol (XMPP) [2] based communication framework [3]

1We use the terms crowdsensing, crowdsourcing and participatory sensing
interchangeably in this paper.

Crowdsensing Based Public Transport Information Service in Smart Cities

DECEMBER 2014 • VOLUME VI • NUMBER 414

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 2

what we designed to facilitate the development of crowd
assisted smart city applications (we also introduce shortly
this framework in Sec. III). Following the publish/subscribe
(pub/sub) communication model the passengers subscribe in
TrafficInfo, according to their interest, to traffic information
channels dedicated to different public transport lines or stops.
Hence, they are informed about the live public transport
situation, such as the actual vehicle positions, deviation from
the static timetable, crowdedness information, etc.

To motivate user participation in data collection we offer
a day zero service to the passengers, which is a static public
transportation timetable. It is built on the General Transit Feed
Specification (GTFS, designed by Google) [4] based transit
schedule data and provided by public transport operators.
TrafficInfo basically presents this static timetable information
to the users which is updated in real-time, if appropriate
crowdsensed data is available. To this end, the application
collects position data; the timestamped halt events of the
public transport vehicles at the stops (our automatic detector is
described in Sec. IV-D); and/or simple annotation data entered
by the user, such as reports on crowdedness or damaged
seat/window/lamp/etc. After analyzing the data gathered live
updates are generated and TrafficInfo refreshes the static
information with them.

The rest of the paper is structured as follows. After a quick
overview of related work in Sec. II we introduce shortly in
Sec. III our generic framework to facilitate the development
of crowdsourcing based services. In Sec. IV, we show our
live public transport information service together with the
developed stop event detector. Finally, in Sec. V we summarize
our work with a short insight to our future plans.

II. RELATED WORK

In this section, we discuss the challenge of attracting users
to participate in crowdsensing and review the relevant works
in the field of crowd assisted transit tracking systems.

A crowdsourcing based service has to acquire the necessary
information from its users who are producers and consumers at
the same time. Therefore it is essential for the service provider
to attract users. However, we face a vicious circle here. The
users are joining the service if they can benefit from it and
at the same time they contribute to keep running the service
which can persuade others also to join. But how can the users
be attracted if the service is not able to provide the expected
service level due to the lack of contributors? This also means
that the service cannot be widely spread without offering a
minimum service level and until it has a sufficiently large user
base.

Moovit2 is a similar application to TrafficInfo which is
meant to be a live transit app on the market providing real-
time information about public transportation. It faces the
above mentioned problem in many countries. Moovit has been
successful only in those cities where it has already a mass of
users, just like in Paris, and not successful in cities where
its user base is low, e.g., in Budapest. In order to create a
sufficiently large user base Moovit provides, besides live data,

2http://www.moovitapp.com/

schedule based public transportation information as a day zero
service, too. The source of this information is the company
who operates the public transportation network. The best
practice is for providing such information is using GTFS [4].
According to the GTFS developer page, currently 263 public
transportation companies provide transit feeds from all over
the world. Moovit partially relies on GTFS and is available
in 350 cities attracting more than 6.5 million users. We also
adopted this solution in TrafficInfo.

Several other mobile crowdsensing based transit tracking
ideas have been published recently. For instance, the authors
in [5] propose a bus arrival time prediction system based on
bus passengers’ participatory sensing. The proposed system
uses movement statuses, audio recordings and mobile cell-
tower signals to identify the vehicle and its actual position.
The authors in [6] propose a method for transit tracking using
the collected data of the accelerometer and the GPS sensor
on the users’ smartphone. The authors in [7] use smartphone
sensors data and machine learning techniques to detect motion
type, e.g., traveling by train or by car. EasyTracker [8] provides
a low cost solution for automatic real-time transit tracking
and mapping based on GPS sensor data gathered from mobile
phones which are placed in transit vehicles. It offers arrival
time prediction, as well.

These approaches focus on the data (what to collect, how
to collect, what to do with the data) to offer enriched services
to the users. However, our focus is on how to introduce
such enriched services incrementally, i.e., how can we create
an architecture and service model, which allows incremental
introduction of live updates from participatory users over static
services that are available in competing approaches. Thus, our
approach complements the above ones.

III. FRAMEWORK FOR CROWDSENSING BASED SMART
CITY APPLICATIONS

In this section, we shortly describe our generic frame-
work [3], which is based on the XMPP publish-subscribe
architecture, to aid the development of crowdsensing based
smart city applications. TrafficInfo is implemented on top of
this framework.

A. Communication Model
XMPP [2] is an open technology for real-time communica-

tion using Extensible Markup Language (XML) [9] message
format. XMPP allows sending of small information pieces
from one entity to another in quasi real-time. It has several
extensions, like multi-party messaging [10] or the notification
service [11]. The latter realizes a publish/subscribe (pub/sub)
communication model [12], where publications sent to a node
are automatically multicast to the subscribers of that node.
This pub/sub communication scheme fits well with most of the
mobile crowdsensing based applications. In these applications,
the users’ mobile devices are used to collect data about the
environment (publish) and the users consume the services
updated on the basis of the collected data (subscribe).

Hence, we use XMPP and its generic publish/subscribe
communication model in our framework to implement inter-
actions. In this model, we define three roles, like Producer,

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

Crowdsensing Based Public Transport Information Service in Smart Cities
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2014 • VOLUME VI • NUMBER 4 15

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

INFOCOMMUNICATIONS JOURNAL 2

what we designed to facilitate the development of crowd
assisted smart city applications (we also introduce shortly
this framework in Sec. III). Following the publish/subscribe
(pub/sub) communication model the passengers subscribe in
TrafficInfo, according to their interest, to traffic information
channels dedicated to different public transport lines or stops.
Hence, they are informed about the live public transport
situation, such as the actual vehicle positions, deviation from
the static timetable, crowdedness information, etc.

To motivate user participation in data collection we offer
a day zero service to the passengers, which is a static public
transportation timetable. It is built on the General Transit Feed
Specification (GTFS, designed by Google) [4] based transit
schedule data and provided by public transport operators.
TrafficInfo basically presents this static timetable information
to the users which is updated in real-time, if appropriate
crowdsensed data is available. To this end, the application
collects position data; the timestamped halt events of the
public transport vehicles at the stops (our automatic detector is
described in Sec. IV-D); and/or simple annotation data entered
by the user, such as reports on crowdedness or damaged
seat/window/lamp/etc. After analyzing the data gathered live
updates are generated and TrafficInfo refreshes the static
information with them.

The rest of the paper is structured as follows. After a quick
overview of related work in Sec. II we introduce shortly in
Sec. III our generic framework to facilitate the development
of crowdsourcing based services. In Sec. IV, we show our
live public transport information service together with the
developed stop event detector. Finally, in Sec. V we summarize
our work with a short insight to our future plans.

II. RELATED WORK

In this section, we discuss the challenge of attracting users
to participate in crowdsensing and review the relevant works
in the field of crowd assisted transit tracking systems.

A crowdsourcing based service has to acquire the necessary
information from its users who are producers and consumers at
the same time. Therefore it is essential for the service provider
to attract users. However, we face a vicious circle here. The
users are joining the service if they can benefit from it and
at the same time they contribute to keep running the service
which can persuade others also to join. But how can the users
be attracted if the service is not able to provide the expected
service level due to the lack of contributors? This also means
that the service cannot be widely spread without offering a
minimum service level and until it has a sufficiently large user
base.

Moovit2 is a similar application to TrafficInfo which is
meant to be a live transit app on the market providing real-
time information about public transportation. It faces the
above mentioned problem in many countries. Moovit has been
successful only in those cities where it has already a mass of
users, just like in Paris, and not successful in cities where
its user base is low, e.g., in Budapest. In order to create a
sufficiently large user base Moovit provides, besides live data,

2http://www.moovitapp.com/

schedule based public transportation information as a day zero
service, too. The source of this information is the company
who operates the public transportation network. The best
practice is for providing such information is using GTFS [4].
According to the GTFS developer page, currently 263 public
transportation companies provide transit feeds from all over
the world. Moovit partially relies on GTFS and is available
in 350 cities attracting more than 6.5 million users. We also
adopted this solution in TrafficInfo.

Several other mobile crowdsensing based transit tracking
ideas have been published recently. For instance, the authors
in [5] propose a bus arrival time prediction system based on
bus passengers’ participatory sensing. The proposed system
uses movement statuses, audio recordings and mobile cell-
tower signals to identify the vehicle and its actual position.
The authors in [6] propose a method for transit tracking using
the collected data of the accelerometer and the GPS sensor
on the users’ smartphone. The authors in [7] use smartphone
sensors data and machine learning techniques to detect motion
type, e.g., traveling by train or by car. EasyTracker [8] provides
a low cost solution for automatic real-time transit tracking
and mapping based on GPS sensor data gathered from mobile
phones which are placed in transit vehicles. It offers arrival
time prediction, as well.

These approaches focus on the data (what to collect, how
to collect, what to do with the data) to offer enriched services
to the users. However, our focus is on how to introduce
such enriched services incrementally, i.e., how can we create
an architecture and service model, which allows incremental
introduction of live updates from participatory users over static
services that are available in competing approaches. Thus, our
approach complements the above ones.

III. FRAMEWORK FOR CROWDSENSING BASED SMART
CITY APPLICATIONS

In this section, we shortly describe our generic frame-
work [3], which is based on the XMPP publish-subscribe
architecture, to aid the development of crowdsensing based
smart city applications. TrafficInfo is implemented on top of
this framework.

A. Communication Model
XMPP [2] is an open technology for real-time communica-

tion using Extensible Markup Language (XML) [9] message
format. XMPP allows sending of small information pieces
from one entity to another in quasi real-time. It has several
extensions, like multi-party messaging [10] or the notification
service [11]. The latter realizes a publish/subscribe (pub/sub)
communication model [12], where publications sent to a node
are automatically multicast to the subscribers of that node.
This pub/sub communication scheme fits well with most of the
mobile crowdsensing based applications. In these applications,
the users’ mobile devices are used to collect data about the
environment (publish) and the users consume the services
updated on the basis of the collected data (subscribe).

Hence, we use XMPP and its generic publish/subscribe
communication model in our framework to implement inter-
actions. In this model, we define three roles, like Producer,

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

INFOCOMMUNICATIONS JOURNAL 3

Consumer and Service Provider (see Fig. 2). These entities
interact with each other via the core service, which consists
of event based pub/sub nodes.

Fig. 2. Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information
source in our model producing raw data streams and plays a
central role in data collection. He is the user who contributes
his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the pro-
vided service(s). He enjoys the value of the collected, cleaned,
analyzed, extended and disseminated information. We call
the user as Prosumer, when he acts in the service as both
Consumer and Producer at the same time.

Service Provider: The Service Provider introduces added
value to the raw data collected by the crowd. Thus, he
intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles
at the same time, as he collects (Consumer role), stores and
analyzes Producers’ data to offer (Service Provider role) value
added service.

In our model, depicted in Fig. 2, Producers are the source
of original data by sensing and monitoring their environment.
They publish (marked by arrows with empty arrowhead)
the collected information to event nodes (raw information
nodes are marked by blue dots). On the other hand, Service
Providers intercept the collected data by subscribing (marked
by arrows with black arrowhead) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowdsensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service
to different content nodes. Consumers who are interested
in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published
information also in an asynchronous manner.

B. Architecture

We can directly map this model to the XMPP pub-
lish/subscribe service model as follows (see Fig. 3):

• Service Providers establish raw pub/sub data nodes,
which gather Producers’ data, for the services they offer.

• Consumers can freely publish their collected data to
the corresponding nodes with appropriate node access
rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

Fig. 3. Mobile crowdsensing: the publish/subscribe value chain using XMPP

• Producers can publish the collected data or their annota-
tions to the raw data nodes at the XMPP server only if
they have appropriate access rights.

• Service Providers collect the published data and introduce
such a service structure for their added value via the
pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations
into and retrieve events from XMPP pub/sub nodes.

• Service Providers subscribed to raw pub/sub nodes col-
lect, store, clean-up and analyze data and extract/derive
new information introducing added value. This new in-
formation is published into pub/sub nodes on the other
side following a suitable structure.

The pub/sub service node structure can benefit from the
aggregation feature of XMPP via using collection nodes,
where a collection node will see all the information received by
its child nodes. Note, however, that the aggregation mechanism
of an XMPP collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied to
implement scalable content aggregation. Fig. 3 shows XMPP
aggregations as dark circles at the container node while empty
circles with dashed lines represent only logical containment
where intelligent aggregation is implemented through the
service logic.

IV. REAL-TIME PUBLIC TRANSPORT INFORMATION
SERVICE

In this section, we shortly overview the architecture of our
public transport information service, then describe TrafficInfo,
its front-end Android interface together with our stop event
detector.

A. Service Architecture

Our real-time public transport information service architec-
ture has two main building blocks, such as our crowdsensing
framework described in Sec. III and the TrafficInfo application
(see Fig. 4). The framework can be divided into two parts, a
standard XMPP server and a GTFS Emulator with an analytics
module.

Crowdsensing Based Public Transport Information Service in Smart Cities

DECEMBER 2014 • VOLUME VI • NUMBER 416

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 5

Fig. 6. Sensor data flows in TrafficInfo

learning. These patterns are delivered back to the application,
where further local analytics can use them for, e.g., identifying
the vehicle and providing position information. These sensor
data flows are depicted in Fig. 6. Note that, at the moment,
stop events are detected locally on the device due to resource
usage reasons and only the detected events with a timestamp
are reported back to the server. Based on this information the
server side analytics estimate the upcoming arrival times of
the given vehicle and disseminate live timetable updates to
the subscribers.

C. Service Levels

Running TrafficInfo in a small city is different than in
big cities, like Budapest. The cause of this difference is the
unavailability of static public transportation information in,
e.g., GTFS format. If even the static public transportation
schedule is not presented by the application, people will likely
not use it. Furthermore, fewer users will generate less live
traffic data which makes the whole application useless. Hence,
it is clear that we should apply a different approach in cities
where static public transportation information has not been
available, yet.

Fig. 7. Service levels vs. user base

Fig. 7 depicts the different service levels that we offer with
the growing number of users. These service levels are the
following.

1) City Explorer: In a new city, at the beginning we
assume that there is zero knowledge in our system about the
city’s public transportation. The goal is to gather the relevant
information in a fast and inexpensive way. When a reliable
GTFS or OSM information base of the given city is available,
we import this data into our databases. In other situations,
we use crowdsourcing to gather this information. We assume
that some users will install the TrafficInfo application either
to contribute to city exploration or just simply for curiosity
(or some incentive mechanism has to be introduced to grab
users). We expect no other contributions than installing the
application, carrying the smartphone during the day, traveling
on public transportation and answering some simple questions
asked by the application. The smartphones, using their built-in
sensors, collect all the necessary data without user interaction.
The questions are used to annotate the collected data.

Every day the captured data is uploaded in a batch to
the server for analysis. At the same time, the application
downloads information about what to ask on the following
day(s).

Fig. 8 depicts an uploaded activity log of a particular user.
In this example, the information source is the Google activity
recognition module mentioned above. The blue bars show the
detected activity during the capture time. In addition, another
sensor module recorded the motion, too. Its output is the red
bars, recognizing only still or moving states. The height of the
bars expresses the confidence of the recognition. Althought the
values represented with blue and red bars are coming from
two different sensors, they usually have the same results for
the still state. There are only a few differences, where the
activity recogniton shows unknown event, while the motion
sensor signals still state. It is not displayed on the figure, but
the GPS position and its accuracy are also logged for every
event.

Fig. 8. Captured sensor data during user activity

The captured logs are processed by the server during the
night, when the users are typically inactive and the system
tries to guess the public transport stops and routes in the
city. The more users report the same information the higher
the chance is to guess the transportation system correctly. A
database stores all the possible stop locations together with

INFOCOMMUNICATIONS JOURNAL 4

Fig. 4. Real-time public transport information service architecture

The XMPP server maps the public transport lines to a
hierarchical pub/sub channel structure. We turned the GTFS
database into an XMPP pub/sub node hierarchy. This node
structure facilitates searching and selecting transit feeds ac-
cording to user interest.

Transit information and real-time event updates are handled
in the Trip nodes at the leaf level. The inner nodes in the node
hierarchy contain only persistent data and references relevant
to the trips. The users can access the transit data via two
ways, based on routes or stops. When the user wants to see a
given trip (vehicle) related traffic information the route based
filtering is applied. On the other hand, when the forthcoming
arrivals at a given stop (location) are of interest the stop based
filtering is the appropriate access way.

The GTFS Emulator provides the static timetable informa-
tion, if it is available, as the initial service. It basically uses
the officially distributed GTFS database of the public transport
operator of the given city. However, it also relies on another
data source, which is OpenStreetMap (OSM), a crowdsourcing
based mapping service [13]. In OSM maps, users have the
possibility to define terminals, public transportation stops or
even public transportation routes. Thus, the OSM based infor-
mation is used to extend and clean the information coming
from the GTFS source. The analytics module is in charge
of the business logic offered by the service, e.g., deriving
crowdedness information or estimating the time of arrivals at
the stops from the data collected by the crowd.

TrafficInfo handles the subscription to the pub/sub channels,
collects sensor readings, publishes events to and receives
updates from the XMPP server, and visualizes the received
information.

B. TrafficInfo Features

TrafficInfo has three main features, but most of the users
will benefit from its visualization capability that visualizes
public transport vehicle movements on a city map.

1) Visualization: An example of this primary feature can
be seen on Fig. 5a displaying trams 1, 4, 6 and buses 7 and
86 on the Budapest map in Hungary. The depicted vehicles

can be filtered to given routes. The icon of a vehicle may
reflect various attributes, such as the number, progress or
crowdedness of the specific vehicle. Clicking on a vehicle’s
icon a popup shows all known information about that specific
vehicle.

(a) Vehicle visualization (b) User feedback form

Fig. 5. TrafficInfo screenshots

2) Information Sharing: The second feature is about infor-
mation sharing. Passengers can share their observations regard-
ing the vehicles they are currently riding. Fig. 5b shows the
feedback screen that is used to submit the observations. The
feedback information is spread out using our crowdsourcing
framework and displayed on the devices of other passengers,
who might be interested in it. It is up to the user what
information and when he wants to submit, but we are planning
to provide incentives to use this feature frequently.

3) Sensing: The third feature is collecting smartphone
sensor readings without user interaction, which is almost
invisible for the user. User positions are reported periodically
and are used to determine the vehicle’s position the passenger
is actually traveling on. In order to create the link between the
passenger and the vehicle, we try to identify the movement of
the user through his activities. To this end we are using various
sensors, e.g., accelerometer, and try to deduct the timestamped
stop events of the vehicles (our automatic stop event detection
mechanism is described in Sec. IV-D). The duration between
the detected stops coupled with GPS coordinates identifies the
route segment, which the user actually rides.

Besides the GPS coordinates Google also provides location
information on those areas, where there is no GPS signal.
Usually this position is highly inaccurate, but the estimated
accuracy is also provided. We also use the activity sensor,
which guesses the actual activity of the user. Currently, the
supported activities are: in vehicle, on bicycle, on foot, run-
ning, still, tilting, walking and unknown. Accuracy is provided
here, as well.

The collected sensor readings, on one hand, are uploaded
to the XMPP server, where the analytics module processes
and shares them among parties who are subscribers of the
relevant information; on the other hand, are used locally. For
example, user activity is analyzed on the server side and it
is used to create non real-time stop patterns through machine

Crowdsensing Based Public Transport Information Service in Smart Cities
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2014 • VOLUME VI • NUMBER 4 17

INFOCOMMUNICATIONS JOURNAL 5

Fig. 6. Sensor data flows in TrafficInfo

learning. These patterns are delivered back to the application,
where further local analytics can use them for, e.g., identifying
the vehicle and providing position information. These sensor
data flows are depicted in Fig. 6. Note that, at the moment,
stop events are detected locally on the device due to resource
usage reasons and only the detected events with a timestamp
are reported back to the server. Based on this information the
server side analytics estimate the upcoming arrival times of
the given vehicle and disseminate live timetable updates to
the subscribers.

C. Service Levels

Running TrafficInfo in a small city is different than in
big cities, like Budapest. The cause of this difference is the
unavailability of static public transportation information in,
e.g., GTFS format. If even the static public transportation
schedule is not presented by the application, people will likely
not use it. Furthermore, fewer users will generate less live
traffic data which makes the whole application useless. Hence,
it is clear that we should apply a different approach in cities
where static public transportation information has not been
available, yet.

Fig. 7. Service levels vs. user base

Fig. 7 depicts the different service levels that we offer with
the growing number of users. These service levels are the
following.

1) City Explorer: In a new city, at the beginning we
assume that there is zero knowledge in our system about the
city’s public transportation. The goal is to gather the relevant
information in a fast and inexpensive way. When a reliable
GTFS or OSM information base of the given city is available,
we import this data into our databases. In other situations,
we use crowdsourcing to gather this information. We assume
that some users will install the TrafficInfo application either
to contribute to city exploration or just simply for curiosity
(or some incentive mechanism has to be introduced to grab
users). We expect no other contributions than installing the
application, carrying the smartphone during the day, traveling
on public transportation and answering some simple questions
asked by the application. The smartphones, using their built-in
sensors, collect all the necessary data without user interaction.
The questions are used to annotate the collected data.

Every day the captured data is uploaded in a batch to
the server for analysis. At the same time, the application
downloads information about what to ask on the following
day(s).

Fig. 8 depicts an uploaded activity log of a particular user.
In this example, the information source is the Google activity
recognition module mentioned above. The blue bars show the
detected activity during the capture time. In addition, another
sensor module recorded the motion, too. Its output is the red
bars, recognizing only still or moving states. The height of the
bars expresses the confidence of the recognition. Althought the
values represented with blue and red bars are coming from
two different sensors, they usually have the same results for
the still state. There are only a few differences, where the
activity recogniton shows unknown event, while the motion
sensor signals still state. It is not displayed on the figure, but
the GPS position and its accuracy are also logged for every
event.

Fig. 8. Captured sensor data during user activity

The captured logs are processed by the server during the
night, when the users are typically inactive and the system
tries to guess the public transport stops and routes in the
city. The more users report the same information the higher
the chance is to guess the transportation system correctly. A
database stores all the possible stop locations together with

INFOCOMMUNICATIONS JOURNAL 4

Fig. 4. Real-time public transport information service architecture

The XMPP server maps the public transport lines to a
hierarchical pub/sub channel structure. We turned the GTFS
database into an XMPP pub/sub node hierarchy. This node
structure facilitates searching and selecting transit feeds ac-
cording to user interest.

Transit information and real-time event updates are handled
in the Trip nodes at the leaf level. The inner nodes in the node
hierarchy contain only persistent data and references relevant
to the trips. The users can access the transit data via two
ways, based on routes or stops. When the user wants to see a
given trip (vehicle) related traffic information the route based
filtering is applied. On the other hand, when the forthcoming
arrivals at a given stop (location) are of interest the stop based
filtering is the appropriate access way.

The GTFS Emulator provides the static timetable informa-
tion, if it is available, as the initial service. It basically uses
the officially distributed GTFS database of the public transport
operator of the given city. However, it also relies on another
data source, which is OpenStreetMap (OSM), a crowdsourcing
based mapping service [13]. In OSM maps, users have the
possibility to define terminals, public transportation stops or
even public transportation routes. Thus, the OSM based infor-
mation is used to extend and clean the information coming
from the GTFS source. The analytics module is in charge
of the business logic offered by the service, e.g., deriving
crowdedness information or estimating the time of arrivals at
the stops from the data collected by the crowd.

TrafficInfo handles the subscription to the pub/sub channels,
collects sensor readings, publishes events to and receives
updates from the XMPP server, and visualizes the received
information.

B. TrafficInfo Features

TrafficInfo has three main features, but most of the users
will benefit from its visualization capability that visualizes
public transport vehicle movements on a city map.

1) Visualization: An example of this primary feature can
be seen on Fig. 5a displaying trams 1, 4, 6 and buses 7 and
86 on the Budapest map in Hungary. The depicted vehicles

can be filtered to given routes. The icon of a vehicle may
reflect various attributes, such as the number, progress or
crowdedness of the specific vehicle. Clicking on a vehicle’s
icon a popup shows all known information about that specific
vehicle.

(a) Vehicle visualization (b) User feedback form

Fig. 5. TrafficInfo screenshots

2) Information Sharing: The second feature is about infor-
mation sharing. Passengers can share their observations regard-
ing the vehicles they are currently riding. Fig. 5b shows the
feedback screen that is used to submit the observations. The
feedback information is spread out using our crowdsourcing
framework and displayed on the devices of other passengers,
who might be interested in it. It is up to the user what
information and when he wants to submit, but we are planning
to provide incentives to use this feature frequently.

3) Sensing: The third feature is collecting smartphone
sensor readings without user interaction, which is almost
invisible for the user. User positions are reported periodically
and are used to determine the vehicle’s position the passenger
is actually traveling on. In order to create the link between the
passenger and the vehicle, we try to identify the movement of
the user through his activities. To this end we are using various
sensors, e.g., accelerometer, and try to deduct the timestamped
stop events of the vehicles (our automatic stop event detection
mechanism is described in Sec. IV-D). The duration between
the detected stops coupled with GPS coordinates identifies the
route segment, which the user actually rides.

Besides the GPS coordinates Google also provides location
information on those areas, where there is no GPS signal.
Usually this position is highly inaccurate, but the estimated
accuracy is also provided. We also use the activity sensor,
which guesses the actual activity of the user. Currently, the
supported activities are: in vehicle, on bicycle, on foot, run-
ning, still, tilting, walking and unknown. Accuracy is provided
here, as well.

The collected sensor readings, on one hand, are uploaded
to the XMPP server, where the analytics module processes
and shares them among parties who are subscribers of the
relevant information; on the other hand, are used locally. For
example, user activity is analyzed on the server side and it
is used to create non real-time stop patterns through machine

Crowdsensing Based Public Transport Information Service in Smart Cities

DECEMBER 2014 • VOLUME VI • NUMBER 418

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 6

their confidence. This database is then downloaded to the
application which will ask simple questions to the users to
identify stops. For instance, the application might ask: “Are
you standing at a stop, waiting for public transport?” We
expect simple answers for simple questions until we can
construct the public transportation stop database. Routes are
explored in a similar way. When the user travels between
already known stops, we assume that there is a public transport
route among these stops. The application might ask the user
about the route type and the line number.

2) Schedule (Re)Construction: Once the public transporta-
tion stops and routes are explored in most parts of the city, we
can assume with high confidence that more users join and use
the application. Visualizing stops and routes aids users to get
orientation. However, the exploration of the city is continuing,
the sensor readings are always collected, but questions are
asked only regarding to the partially explored areas.

When the number of users exceeds a certain level and the
trips can be guessed, the automatic detection of the stop events
comes into the picture. The detected events are reported to
the server by the application. The server filters this data and
analyzes the patterns of each transport line. As more stop
events are captured the patterns are more complete and finally
the public transportation schedule is constructed.

3) Live Schedule: TrafficInfo providing public transporta-
tion stops, routes and schedules is assumed to attract many
users, similarly to those applications that are available in big
cities based on GTFS data. One advantage of TrafficInfo is
that it provides an alternative way to collect all necessary in-
formation from scratch which does not require the cooperation
of the public transport operator company, rather relies on the
power of the crowd.

When the number of users is high enough and (static)
schedule information is available, the continuously collected
position and stop event data is used to create and propagate
lively updates. These updates refresh the timetable if necessary
and reflect the actual public transport traffic conditions.

4) Information Sharing on Public Transport Conditions:
On-line users are able to send and receive information about
the vehicle’s conditions they are actually riding. This requires
user interaction on a voluntary basis as current sensors are
not able to detect crowdedness, torn seats, bad drivers, etc. If
the application has a wide user base we can always expect
some volunteers to report on such conditions. The application
provides easy to use forms to enter the relevant data (see
Sec. IV-B2).

5) Additional Services: When TrafficInfo is running in
a full-fledged manner, it can cooperate with other services
targeting public transportation. For example, a rendezvous
service can be paired to the TrafficInfo application to organize
dates on public transportation vehicles.

D. Stop Event Detection

One of the fundamental functions of TrafficInfo is to detect
stop events of public transport vehicles. We implemented such
a detector locally on the mobile device. The reason behind
that is twofold. First, cheaper devices produce bogus raw GPS

location data that, if directly transmitted to the XMPP server,
would mislead the service. Second, raw logs are generated
at a very high rate and it would cause a substantial burden
to transmit the raw logged data to the server in real-time for
further processing. Instead, only when stop events are detected
a summary of information, e.g., the timestamp of the event and
the time elapsed since the last stop event, will be transmitted.

Fig. 9. GPS position trajectory (blue) and the real tram route (red) as logged
by a Samsung Galaxy S3 device

Fig. 10. GPS position trajectory (blue), the real tram route (red) and stops
(yellow dots) as logged and detected by a Nexus4 device

To illustrate the challenge of stop event detection, we show
the logged trajectory on tram routes 4 and 6 in Budapest from
two devices, a Samsung Galaxy S3 and a Nexus4 smartphone,
in Fig. 9 and Fig. 10, respectively. In case of Nexus4 (Fig. 10),
yellow dots indicate the predicted locations of the stop events.
Note that Nexus4 with network information provides correct
position data, similar in quality to the Galaxy S3 device.

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 6

their confidence. This database is then downloaded to the
application which will ask simple questions to the users to
identify stops. For instance, the application might ask: “Are
you standing at a stop, waiting for public transport?” We
expect simple answers for simple questions until we can
construct the public transportation stop database. Routes are
explored in a similar way. When the user travels between
already known stops, we assume that there is a public transport
route among these stops. The application might ask the user
about the route type and the line number.

2) Schedule (Re)Construction: Once the public transporta-
tion stops and routes are explored in most parts of the city, we
can assume with high confidence that more users join and use
the application. Visualizing stops and routes aids users to get
orientation. However, the exploration of the city is continuing,
the sensor readings are always collected, but questions are
asked only regarding to the partially explored areas.

When the number of users exceeds a certain level and the
trips can be guessed, the automatic detection of the stop events
comes into the picture. The detected events are reported to
the server by the application. The server filters this data and
analyzes the patterns of each transport line. As more stop
events are captured the patterns are more complete and finally
the public transportation schedule is constructed.

3) Live Schedule: TrafficInfo providing public transporta-
tion stops, routes and schedules is assumed to attract many
users, similarly to those applications that are available in big
cities based on GTFS data. One advantage of TrafficInfo is
that it provides an alternative way to collect all necessary in-
formation from scratch which does not require the cooperation
of the public transport operator company, rather relies on the
power of the crowd.

When the number of users is high enough and (static)
schedule information is available, the continuously collected
position and stop event data is used to create and propagate
lively updates. These updates refresh the timetable if necessary
and reflect the actual public transport traffic conditions.

4) Information Sharing on Public Transport Conditions:
On-line users are able to send and receive information about
the vehicle’s conditions they are actually riding. This requires
user interaction on a voluntary basis as current sensors are
not able to detect crowdedness, torn seats, bad drivers, etc. If
the application has a wide user base we can always expect
some volunteers to report on such conditions. The application
provides easy to use forms to enter the relevant data (see
Sec. IV-B2).

5) Additional Services: When TrafficInfo is running in
a full-fledged manner, it can cooperate with other services
targeting public transportation. For example, a rendezvous
service can be paired to the TrafficInfo application to organize
dates on public transportation vehicles.

D. Stop Event Detection

One of the fundamental functions of TrafficInfo is to detect
stop events of public transport vehicles. We implemented such
a detector locally on the mobile device. The reason behind
that is twofold. First, cheaper devices produce bogus raw GPS

location data that, if directly transmitted to the XMPP server,
would mislead the service. Second, raw logs are generated
at a very high rate and it would cause a substantial burden
to transmit the raw logged data to the server in real-time for
further processing. Instead, only when stop events are detected
a summary of information, e.g., the timestamp of the event and
the time elapsed since the last stop event, will be transmitted.

Fig. 9. GPS position trajectory (blue) and the real tram route (red) as logged
by a Samsung Galaxy S3 device

Fig. 10. GPS position trajectory (blue), the real tram route (red) and stops
(yellow dots) as logged and detected by a Nexus4 device

To illustrate the challenge of stop event detection, we show
the logged trajectory on tram routes 4 and 6 in Budapest from
two devices, a Samsung Galaxy S3 and a Nexus4 smartphone,
in Fig. 9 and Fig. 10, respectively. In case of Nexus4 (Fig. 10),
yellow dots indicate the predicted locations of the stop events.
Note that Nexus4 with network information provides correct
position data, similar in quality to the Galaxy S3 device.

INFOCOMMUNICATIONS JOURNAL 6

their confidence. This database is then downloaded to the
application which will ask simple questions to the users to
identify stops. For instance, the application might ask: “Are
you standing at a stop, waiting for public transport?” We
expect simple answers for simple questions until we can
construct the public transportation stop database. Routes are
explored in a similar way. When the user travels between
already known stops, we assume that there is a public transport
route among these stops. The application might ask the user
about the route type and the line number.

2) Schedule (Re)Construction: Once the public transporta-
tion stops and routes are explored in most parts of the city, we
can assume with high confidence that more users join and use
the application. Visualizing stops and routes aids users to get
orientation. However, the exploration of the city is continuing,
the sensor readings are always collected, but questions are
asked only regarding to the partially explored areas.

When the number of users exceeds a certain level and the
trips can be guessed, the automatic detection of the stop events
comes into the picture. The detected events are reported to
the server by the application. The server filters this data and
analyzes the patterns of each transport line. As more stop
events are captured the patterns are more complete and finally
the public transportation schedule is constructed.

3) Live Schedule: TrafficInfo providing public transporta-
tion stops, routes and schedules is assumed to attract many
users, similarly to those applications that are available in big
cities based on GTFS data. One advantage of TrafficInfo is
that it provides an alternative way to collect all necessary in-
formation from scratch which does not require the cooperation
of the public transport operator company, rather relies on the
power of the crowd.

When the number of users is high enough and (static)
schedule information is available, the continuously collected
position and stop event data is used to create and propagate
lively updates. These updates refresh the timetable if necessary
and reflect the actual public transport traffic conditions.

4) Information Sharing on Public Transport Conditions:
On-line users are able to send and receive information about
the vehicle’s conditions they are actually riding. This requires
user interaction on a voluntary basis as current sensors are
not able to detect crowdedness, torn seats, bad drivers, etc. If
the application has a wide user base we can always expect
some volunteers to report on such conditions. The application
provides easy to use forms to enter the relevant data (see
Sec. IV-B2).

5) Additional Services: When TrafficInfo is running in
a full-fledged manner, it can cooperate with other services
targeting public transportation. For example, a rendezvous
service can be paired to the TrafficInfo application to organize
dates on public transportation vehicles.

D. Stop Event Detection

One of the fundamental functions of TrafficInfo is to detect
stop events of public transport vehicles. We implemented such
a detector locally on the mobile device. The reason behind
that is twofold. First, cheaper devices produce bogus raw GPS

location data that, if directly transmitted to the XMPP server,
would mislead the service. Second, raw logs are generated
at a very high rate and it would cause a substantial burden
to transmit the raw logged data to the server in real-time for
further processing. Instead, only when stop events are detected
a summary of information, e.g., the timestamp of the event and
the time elapsed since the last stop event, will be transmitted.

Fig. 9. GPS position trajectory (blue) and the real tram route (red) as logged
by a Samsung Galaxy S3 device

Fig. 10. GPS position trajectory (blue), the real tram route (red) and stops
(yellow dots) as logged and detected by a Nexus4 device

To illustrate the challenge of stop event detection, we show
the logged trajectory on tram routes 4 and 6 in Budapest from
two devices, a Samsung Galaxy S3 and a Nexus4 smartphone,
in Fig. 9 and Fig. 10, respectively. In case of Nexus4 (Fig. 10),
yellow dots indicate the predicted locations of the stop events.
Note that Nexus4 with network information provides correct
position data, similar in quality to the Galaxy S3 device.

Crowdsensing Based Public Transport Information Service in Smart Cities
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2014 • VOLUME VI • NUMBER 4 19

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 6

their confidence. This database is then downloaded to the
application which will ask simple questions to the users to
identify stops. For instance, the application might ask: “Are
you standing at a stop, waiting for public transport?” We
expect simple answers for simple questions until we can
construct the public transportation stop database. Routes are
explored in a similar way. When the user travels between
already known stops, we assume that there is a public transport
route among these stops. The application might ask the user
about the route type and the line number.

2) Schedule (Re)Construction: Once the public transporta-
tion stops and routes are explored in most parts of the city, we
can assume with high confidence that more users join and use
the application. Visualizing stops and routes aids users to get
orientation. However, the exploration of the city is continuing,
the sensor readings are always collected, but questions are
asked only regarding to the partially explored areas.

When the number of users exceeds a certain level and the
trips can be guessed, the automatic detection of the stop events
comes into the picture. The detected events are reported to
the server by the application. The server filters this data and
analyzes the patterns of each transport line. As more stop
events are captured the patterns are more complete and finally
the public transportation schedule is constructed.

3) Live Schedule: TrafficInfo providing public transporta-
tion stops, routes and schedules is assumed to attract many
users, similarly to those applications that are available in big
cities based on GTFS data. One advantage of TrafficInfo is
that it provides an alternative way to collect all necessary in-
formation from scratch which does not require the cooperation
of the public transport operator company, rather relies on the
power of the crowd.

When the number of users is high enough and (static)
schedule information is available, the continuously collected
position and stop event data is used to create and propagate
lively updates. These updates refresh the timetable if necessary
and reflect the actual public transport traffic conditions.

4) Information Sharing on Public Transport Conditions:
On-line users are able to send and receive information about
the vehicle’s conditions they are actually riding. This requires
user interaction on a voluntary basis as current sensors are
not able to detect crowdedness, torn seats, bad drivers, etc. If
the application has a wide user base we can always expect
some volunteers to report on such conditions. The application
provides easy to use forms to enter the relevant data (see
Sec. IV-B2).

5) Additional Services: When TrafficInfo is running in
a full-fledged manner, it can cooperate with other services
targeting public transportation. For example, a rendezvous
service can be paired to the TrafficInfo application to organize
dates on public transportation vehicles.

D. Stop Event Detection

One of the fundamental functions of TrafficInfo is to detect
stop events of public transport vehicles. We implemented such
a detector locally on the mobile device. The reason behind
that is twofold. First, cheaper devices produce bogus raw GPS

location data that, if directly transmitted to the XMPP server,
would mislead the service. Second, raw logs are generated
at a very high rate and it would cause a substantial burden
to transmit the raw logged data to the server in real-time for
further processing. Instead, only when stop events are detected
a summary of information, e.g., the timestamp of the event and
the time elapsed since the last stop event, will be transmitted.

Fig. 9. GPS position trajectory (blue) and the real tram route (red) as logged
by a Samsung Galaxy S3 device

Fig. 10. GPS position trajectory (blue), the real tram route (red) and stops
(yellow dots) as logged and detected by a Nexus4 device

To illustrate the challenge of stop event detection, we show
the logged trajectory on tram routes 4 and 6 in Budapest from
two devices, a Samsung Galaxy S3 and a Nexus4 smartphone,
in Fig. 9 and Fig. 10, respectively. In case of Nexus4 (Fig. 10),
yellow dots indicate the predicted locations of the stop events.
Note that Nexus4 with network information provides correct
position data, similar in quality to the Galaxy S3 device.

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 7

Unfortunately, we were not able to collect GPS position data
from all the devices we used in our experiments even if the
device was equipped with GPS sensor.

Our solution for stop event detection is based on features.
Hence, we generated several features from the experimental
usage logs collected during the testing period. The measure-
ment object we used to collect context data is summarized
in Table I. It includes among others GPS, WiFi, network and
acceleration sensor readings, etc.

TABLE I
SEMANTICS OF TRAFFICINFO MEASUREMENT LOGS

Field Description Examples, Possible Values
Event type Initialization, manual, sensor
Timestamp Time when the event occurred
Track (tram, bus line) Tram 6
Phone type E.g., Nexus4 including IMEI
Acceleration Absolute or axes X, Y and Z
GSM signal strength As defined in the relevant standard
Android GPS, network and passive
location accuracy, longitude and
Latitude values

Android GPS Location Provider
data, accuracy radius with 68%
confidence

CellID, WiFi MACID LAC (Location Area Code) and
CID (Cell ID)

Vehicle number ID of the transport vehicle
Direction Onward or backward
Arrived at Time of arrival at the stop
Manual input - Stopped at Station

- Revoke Stopped at Station
- Leaving Stop
- Revoke Leaving Stop
- Stopped at Traffic Light
- Revoke Stopped at Traffic Light
- Revoke Last Input

The features we defined are the following:
• Latitude, Longitude: raw GPS data;
• AccAbsMax and AccAbsMin: maximum and minimum

value of acceleration in the past 20 seconds;
• Last Annotation Time: in seconds, depending on the

annotation type (Stopped at Station or Leaving Stop);
• Closest Station: distance calculated from raw GPS data;
• GPS Distance: distance traveled during the last 20 sec-

onds based on raw GPS data.
We collected Android sensor and location data by using
the Android Location API3. The device can have multiple
LocationProvider subclasses based on network, GPS and
passive sensors, and the location manager has a method
to select the best provider. Accessing the sensors requires
three level permissions: ACCESS FINE LOCATION, AC-
CESS COARSE LOCATION, INTERNET. The GPS sensor
can be accessed by the NMEA listener4. Accelerometer is
accessible through the Google Location Services API, part of
Google Play Services, a high level framework that automates
the location provider choice.

For classification we used the J48 decision tree implemen-
tation of the Weka data mining tool5. The final output of

3http://developer.android.com/guide/topics/sensors/index.html
4https://developer.android.com/reference/android/location/GpsStatus.

NmeaListener.html
5http://www.cs.waikato.ac.nz/ml/weka/

our detector is the detected stop event, including location and
timestamp. With the combination of the defined features and
models we could detect stop events with high accuracy within
13 seconds after the arrival at the station.

We measure the accuracy of the method by computing the
precision, recall and AUC (Area Under the Curve) [14] of our
classifiers in a 10-fold crossvalidation setting. We consider
AUC as the main stable measure for classifier performance
that does not depend on the decision threshold separating the
predicted stop events. The best classifier reached precision
0.97, recall 0.95, F measure 0.96. The corresponding best AUC
was 0.86, which means that a random time point when the
tram is at a stop is predicted 86% more likely a stop than
another random time point when the tram is in between two
stops. In general, an AUC between 0.8–0.9 is considered in
the literature to be good to excellent.

V. SUMMARY

In this paper, we shortly introduced our XMPP based com-
munication framework that we designed to facilitate the de-
velopment of crowd assisted smart city applications. Then we
presented our crowdsensing based real-time public transport
information service, implemented on top of our framework,
and its front-end Android application, called TrafficInfo, in
detail together with our stop event detector. This detector
was developed to automatically detect halt events of public
transport vehicles at the stops.

As future work, we plan to develop TrafficInfo further and
enhance the different services of all the introduced service
levels. Moreover, we intend to recruit a noticeable user base
and carry out field experiments with these real users. Their
feedback is important to plan the directions for improvements.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. Károly Farkas has been par-
tially supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] R. L. Szabo and K. Farkas, “A Publish-Subscribe Scheme Based Open
Architecture for Crowd-sourcing,” in Proceedings of 19th EUNICE
Workshop on Advances in Communication Networking (EUNICE 2013).
Springer, Aug. 2013, pp. 1–5.

[4] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[5] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[6] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

INFOCOMMUNICATIONS JOURNAL 6

their confidence. This database is then downloaded to the
application which will ask simple questions to the users to
identify stops. For instance, the application might ask: “Are
you standing at a stop, waiting for public transport?” We
expect simple answers for simple questions until we can
construct the public transportation stop database. Routes are
explored in a similar way. When the user travels between
already known stops, we assume that there is a public transport
route among these stops. The application might ask the user
about the route type and the line number.

2) Schedule (Re)Construction: Once the public transporta-
tion stops and routes are explored in most parts of the city, we
can assume with high confidence that more users join and use
the application. Visualizing stops and routes aids users to get
orientation. However, the exploration of the city is continuing,
the sensor readings are always collected, but questions are
asked only regarding to the partially explored areas.

When the number of users exceeds a certain level and the
trips can be guessed, the automatic detection of the stop events
comes into the picture. The detected events are reported to
the server by the application. The server filters this data and
analyzes the patterns of each transport line. As more stop
events are captured the patterns are more complete and finally
the public transportation schedule is constructed.

3) Live Schedule: TrafficInfo providing public transporta-
tion stops, routes and schedules is assumed to attract many
users, similarly to those applications that are available in big
cities based on GTFS data. One advantage of TrafficInfo is
that it provides an alternative way to collect all necessary in-
formation from scratch which does not require the cooperation
of the public transport operator company, rather relies on the
power of the crowd.

When the number of users is high enough and (static)
schedule information is available, the continuously collected
position and stop event data is used to create and propagate
lively updates. These updates refresh the timetable if necessary
and reflect the actual public transport traffic conditions.

4) Information Sharing on Public Transport Conditions:
On-line users are able to send and receive information about
the vehicle’s conditions they are actually riding. This requires
user interaction on a voluntary basis as current sensors are
not able to detect crowdedness, torn seats, bad drivers, etc. If
the application has a wide user base we can always expect
some volunteers to report on such conditions. The application
provides easy to use forms to enter the relevant data (see
Sec. IV-B2).

5) Additional Services: When TrafficInfo is running in
a full-fledged manner, it can cooperate with other services
targeting public transportation. For example, a rendezvous
service can be paired to the TrafficInfo application to organize
dates on public transportation vehicles.

D. Stop Event Detection

One of the fundamental functions of TrafficInfo is to detect
stop events of public transport vehicles. We implemented such
a detector locally on the mobile device. The reason behind
that is twofold. First, cheaper devices produce bogus raw GPS

location data that, if directly transmitted to the XMPP server,
would mislead the service. Second, raw logs are generated
at a very high rate and it would cause a substantial burden
to transmit the raw logged data to the server in real-time for
further processing. Instead, only when stop events are detected
a summary of information, e.g., the timestamp of the event and
the time elapsed since the last stop event, will be transmitted.

Fig. 9. GPS position trajectory (blue) and the real tram route (red) as logged
by a Samsung Galaxy S3 device

Fig. 10. GPS position trajectory (blue), the real tram route (red) and stops
(yellow dots) as logged and detected by a Nexus4 device

To illustrate the challenge of stop event detection, we show
the logged trajectory on tram routes 4 and 6 in Budapest from
two devices, a Samsung Galaxy S3 and a Nexus4 smartphone,
in Fig. 9 and Fig. 10, respectively. In case of Nexus4 (Fig. 10),
yellow dots indicate the predicted locations of the stop events.
Note that Nexus4 with network information provides correct
position data, similar in quality to the Galaxy S3 device.

Crowdsensing Based Public Transport Information Service in Smart Cities

DECEMBER 2014 • VOLUME VI • NUMBER 420

INFOCOMMUNICATIONS JOURNAL

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Membrane Systems from the Viewpoint of the
Chemical Computing Paradigm

Péter Battyányi and György Vaszil

Abstract—Membrane systems are nature motivated abstract
computational models inspired by basic features of biological
cells and their membranes. They are examples of the chemical
computational paradigm which describes computation in terms
of chemical solutions where molecules interact according to
rules defining their reaction capabilities. In this survey, we first
review some of the basic features and properties of the chemical
paradigm of computation, and also give a short introduction to
membrane systems. Then examine the relationship of the certain
chemical programming formalisms and some simple types of
membrane systems.

Index Terms—Abstract computational models, chemical com-
puting paradigm, membrane systems.

I. INTRODUCTION

MEMBRANE systems are abstract computational mod-
els inspired by the architecture and the functioning

of biological cells. Their structure consists of hierarchically
embedded membranes, with multisets of symbolic objects
associated to the regions enclosed by them. The evolution of
the system is governed by rules assigned to the regions. The
system performs nondeterministic transformations of these
multisets, which produces a series of configuration changes
which is interpreted as a computation. The area was initiated
by Gh. Păun in [11] and the literature on the domain has
grown very fast. Soon it became one of the most important
and most popular areas of Natural Computing. For details on
the developments, consult the monograph [12] or the more
recent handbook [13].

In this survey, we look at the field of membrane computing
as a particular example of the so called chemical computa-
tional paradigm. This paradigm aims to describe computations
in terms of a symbolic chemical solution of molecules and the
reactions which can take place between them. Its origins go
back to the Gamma programming language of Bânatre and
Le Métayer introduced in [6], [7]. Their aim was to free the
expression of algorithms from the sequentiality which is not
inherently present in the problem to be solved, that is, the
sequentiality which is implied by the structure of the computa-
tional model on which the given algorithm is to be performed.
In other words, their aim was to free the programmer from the
necessity of taking into account the underlying architecture of
the machine that is being programmed.

The idea was carried on into several directions, see [3] for an
overview. From our point of view, one of the most interesting

Manuscript received October 23, 2014, revised December 8, 2014.
Péter Battyányi and György Vaszil are with the Department of Com-

puter Science, Faculty of Informatics, University of Debrecen, Kassai
út 26, 4028 Debrecen, Hungary, e-mail: battyanyi.peter@inf.unideb.hu,
vaszil.gyorgy@inf.unideb.hu

developments was the introduction of the so called chemical
abstract machine, see [9], where the notion of membrane
appears serving as a delimiter between different types of sub-
solutions, forcing the reactions of the sub-solutions to occur
in a locally isolated way. This model and the idea of locally
delimited regions and membranes was one of the explicit
motivations behind membrane systems, as they appear in [11].

In the following we give a short introduction to some of
the formalisms used to describe computations in the chemical
way, and also present some of the basic notions of membrane
computing. Then, based on the results of [10] and [8] we
present some ideas on how the chemical formalisms and
membrane systems can be related to each other. This approach
is interesting in at least two ways. By being able to translate
chemical programs to membrane systems, we could obtain
a high level programming language for the description of
membrane algorithms. On the other hand, by being able to
describe membrane computations with some of the chemical
formalisms, we would be able to reason about the properties
of membrane systems in a mathematically precise manner.

II. PRELIMINARY DEFINITIONS AND NOTATION

An alphabet is a finite non-empty set of symbols V , the set
of strings over V is denoted by V ∗ .

A finite multiset over an alphabet V is a mapping M : V →
N where N denotes the set of non-negative integers, and M(a)
for a ∈ V is said to be the multiplicity of a in M . The set of
all finite multisets over the set V is denoted by M(V).

We usually enumerate the not necessarily distinct elements
a1, . . . , an of a multiset as M = 〈a1, . . . , an〉, but the multiset
M can also be represented by any permutation of a string
w = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where if M(x) �= 0,

then there exists j, 1 ≤ j ≤ n, such that x = aj . The empty
multiset is denoted by ∅.

For more on the basics of formal language theory and
Membrane Computing the reader is referred to the monograph
[15], and the handbooks [14] and [13].

III. COMPUTATION AS REACTIONS IN A CHEMICAL
SOLUTION

A chemical “machine” can be thought of as a symbolic
chemical solution where data can be seen as molecules and
operations as chemical reactions. If some molecules satisfy
a reaction condition, they are replaced by the result of the
reaction. If no reaction is possible, the program terminates.
Chemical solutions are represented by multisets. Molecules
interact freely according to reaction rules which results in an

INFOCOMMUNICATIONS JOURNAL 8

[7] L. Bedogni, M. Di Felice, and L. Bononi, “By Train or by Car?
Detecting the User’s Motion Type Through Smartphone Sensors Data,”
in Proceedings of IFIP Wireless Days Conference (WD 2012), 2012, pp.
1–6.

[8] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction
Using Smartphones,” in Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2011), Nov. 2011, pp.
1–14.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible Markup Language (XML) 1.0 (Fifth Edition),” W3C, W3C
Recommendation REC-xml-20081126, Nov. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[10] P. Saint-Andre, “XEP-0045: Multi-User Chat,” XMPP Standards
Foundation, Standards Track XEP-0045, Feb. 2012. [Online]. Available:
http://xmpp.org/extensions/xep-0045.html

[11] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
Subscribe,” XMPP Standards Foundation, Draft Standard XEP-0060,
Jul. 2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.html

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[13] M. M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1109/MPRV.2008.80

[14] J. Fogarty, R. S. Baker, and S. E. Hudson, “Case Studies in
the Use of ROC Curve Analysis for Sensor-based Estimates in
Human Computer Interaction,” in Proceedings of Graphics Interface
2005, ser. GI ’05. School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2005, pp. 129–136. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1089508.1089530

Károly Farkas received his Ph.D. degree in Com-
puter Science in 2007 from ETH Zurich, Switzer-
land, and his M.Sc. degree in Computer Science in
1998 from the Budapest University of Technology
and Economics (BME), Hungary. Currently he is
working as an associate professor at BME. His
research interests cover the field of communica-
tion networks, especially autonomic, self-organized,
wireless and mobile ad hoc networks, and mobile
crowdsourcing. He has published more than 70 sci-
entific papers in different journals, conferences and

workshops and he has given a plenty of regular and invited talks. In the
years past, he supervised a number of student theses and coordinated or
participated in several national and international research projects, such as
CityCrowdSource of EIT ICTLabs. Moreover, he acted as program committee
member, reviewer and organizer of numerous scientific conferences, thus he
took the general co-chair role of the IEEE PerCom 2014 conference and
the TPC co-chair role of the CROWDSENSING 2014 and the CASPer 2015
workshops. He is the coordinator of the local Cisco Networking Academy
and was the founding initiator of the Cisco IPv6 Training Laboratory and the
BME NetSkills Challenge student competition at BME. Between 2012 - 2015
Dr. Farkas has been awarded the Bolyai János Research Fellowship of the
Hungarian Academy of Sciences.

Gábor Fehér graduated in 1998 at the Budapest
University of Technology and Economics on the
Faculty of Electronic Engineering and Informatics.
In 2004 he received a PhD. degree, the topic of his
thesis was resource control in IP networks. Currently
he is an associate professor at the same university.
Besides giving lectures, he is also contributing to
various national and international research projects.
From 2004 he is continuously involved in three
consecutive EU founded IST/ICT projects. He has
teaching activity on the faculty’s Smart City spe-

cialization working with microelectronics, sensor networks and smartphones.
He and his students are working on more projects with crowdsouring and
crowdsensing, from the basic research up to the prototype applications.

András Benczúr received his Ph.D. at the Mas-
sachusetts Institute of Technology in 1997. Since
then his interest turned to Data Science. He is the
head of 30 doctoral students, post-docs and develop-
ers at the Institute for Computer Science and Control
of the Hungarian Academy of Sciences (SZTAKI).
He is site coordinator in the Hungarian Future-
ICT project, and cloud computing activity leader
in the Budapest node of EIT ICTLabs. He serves
on the program committees of leading conferences
including WWW, WSDM, ECML/PKDD, he was

Workshop Chair for WWW 2009 and main organizer of the ECML/PKDD
Discovery Challenge 2010. In 2012 he was awarded the Momentum grant of
the Hungarian Academy of Sciences for his research in Big Data.

Csaba Sidló started working on data warehousing
projects and application driven research problems of
extremely large data sets in 2000. He joined the
Institute for Computer Science and Control of the
Hungarian Academy of Sciences (SZTAKI) in 2004;
he is now head of the Big Data Business Intelligence
research group. His main interest is Big Data analyt-
ics and business intelligence on scalable distributed
architectures. His industrial projects include master
data entity resolution, integration and analytics of
log, web and location data. He is currently involved

in several big data projects for web, telecom and sensor data analytics.
Csaba authored several research papers and book chapters, and has a PhD
in Informatics from Eötvös University, Hungary.

INFOCOMMUNICATIONS JOURNAL 8

[7] L. Bedogni, M. Di Felice, and L. Bononi, “By Train or by Car?
Detecting the User’s Motion Type Through Smartphone Sensors Data,”
in Proceedings of IFIP Wireless Days Conference (WD 2012), 2012, pp.
1–6.

[8] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction
Using Smartphones,” in Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2011), Nov. 2011, pp.
1–14.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible Markup Language (XML) 1.0 (Fifth Edition),” W3C, W3C
Recommendation REC-xml-20081126, Nov. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[10] P. Saint-Andre, “XEP-0045: Multi-User Chat,” XMPP Standards
Foundation, Standards Track XEP-0045, Feb. 2012. [Online]. Available:
http://xmpp.org/extensions/xep-0045.html

[11] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
Subscribe,” XMPP Standards Foundation, Draft Standard XEP-0060,
Jul. 2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.html

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[13] M. M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1109/MPRV.2008.80

[14] J. Fogarty, R. S. Baker, and S. E. Hudson, “Case Studies in
the Use of ROC Curve Analysis for Sensor-based Estimates in
Human Computer Interaction,” in Proceedings of Graphics Interface
2005, ser. GI ’05. School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2005, pp. 129–136. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1089508.1089530

Károly Farkas received his Ph.D. degree in Com-
puter Science in 2007 from ETH Zurich, Switzer-
land, and his M.Sc. degree in Computer Science in
1998 from the Budapest University of Technology
and Economics (BME), Hungary. Currently he is
working as an associate professor at BME. His
research interests cover the field of communica-
tion networks, especially autonomic, self-organized,
wireless and mobile ad hoc networks, and mobile
crowdsourcing. He has published more than 70 sci-
entific papers in different journals, conferences and

workshops and he has given a plenty of regular and invited talks. In the
years past, he supervised a number of student theses and coordinated or
participated in several national and international research projects, such as
CityCrowdSource of EIT ICTLabs. Moreover, he acted as program committee
member, reviewer and organizer of numerous scientific conferences, thus he
took the general co-chair role of the IEEE PerCom 2014 conference and
the TPC co-chair role of the CROWDSENSING 2014 and the CASPer 2015
workshops. He is the coordinator of the local Cisco Networking Academy
and was the founding initiator of the Cisco IPv6 Training Laboratory and the
BME NetSkills Challenge student competition at BME. Between 2012 - 2015
Dr. Farkas has been awarded the Bolyai János Research Fellowship of the
Hungarian Academy of Sciences.

Gábor Fehér graduated in 1998 at the Budapest
University of Technology and Economics on the
Faculty of Electronic Engineering and Informatics.
In 2004 he received a PhD. degree, the topic of his
thesis was resource control in IP networks. Currently
he is an associate professor at the same university.
Besides giving lectures, he is also contributing to
various national and international research projects.
From 2004 he is continuously involved in three
consecutive EU founded IST/ICT projects. He has
teaching activity on the faculty’s Smart City spe-

cialization working with microelectronics, sensor networks and smartphones.
He and his students are working on more projects with crowdsouring and
crowdsensing, from the basic research up to the prototype applications.

András Benczúr received his Ph.D. at the Mas-
sachusetts Institute of Technology in 1997. Since
then his interest turned to Data Science. He is the
head of 30 doctoral students, post-docs and develop-
ers at the Institute for Computer Science and Control
of the Hungarian Academy of Sciences (SZTAKI).
He is site coordinator in the Hungarian Future-
ICT project, and cloud computing activity leader
in the Budapest node of EIT ICTLabs. He serves
on the program committees of leading conferences
including WWW, WSDM, ECML/PKDD, he was

Workshop Chair for WWW 2009 and main organizer of the ECML/PKDD
Discovery Challenge 2010. In 2012 he was awarded the Momentum grant of
the Hungarian Academy of Sciences for his research in Big Data.

Csaba Sidló started working on data warehousing
projects and application driven research problems of
extremely large data sets in 2000. He joined the
Institute for Computer Science and Control of the
Hungarian Academy of Sciences (SZTAKI) in 2004;
he is now head of the Big Data Business Intelligence
research group. His main interest is Big Data analyt-
ics and business intelligence on scalable distributed
architectures. His industrial projects include master
data entity resolution, integration and analytics of
log, web and location data. He is currently involved

in several big data projects for web, telecom and sensor data analytics.
Csaba authored several research papers and book chapters, and has a PhD
in Informatics from Eötvös University, Hungary.

INFOCOMMUNICATIONS JOURNAL

20 DECEMBER 2014 • VOLUME VI • NUMBER 4

Crowdsensing Based Public Transport Information Service in Smart Cities

InfocomJ2014_4 2014.12.29 02:05 Page 20

INFOCOMMUNICATIONS JOURNAL

20 DECEMBER 2014 • VOLUME VI • NUMBER 4

Crowdsensing Based Public Transport Information Service in Smart Cities

InfocomJ2014_4 2014.12.29 02:05 Page 20

INFOCOMMUNICATIONS JOURNAL

20 DECEMBER 2014 • VOLUME VI • NUMBER 4

Crowdsensing Based Public Transport Information Service in Smart Cities

InfocomJ2014_4 2014.12.29 02:05 Page 20

INFOCOMMUNICATIONS JOURNAL

20 DECEMBER 2014 • VOLUME VI • NUMBER 4

Crowdsensing Based Public Transport Information Service in Smart Cities

InfocomJ2014_4 2014.12.29 02:05 Page 20

INFOCOMMUNICATIONS JOURNAL 8

[7] L. Bedogni, M. Di Felice, and L. Bononi, “By Train or by Car?
Detecting the User’s Motion Type Through Smartphone Sensors Data,”
in Proceedings of IFIP Wireless Days Conference (WD 2012), 2012, pp.
1–6.

[8] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction
Using Smartphones,” in Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2011), Nov. 2011, pp.
1–14.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible Markup Language (XML) 1.0 (Fifth Edition),” W3C, W3C
Recommendation REC-xml-20081126, Nov. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[10] P. Saint-Andre, “XEP-0045: Multi-User Chat,” XMPP Standards
Foundation, Standards Track XEP-0045, Feb. 2012. [Online]. Available:
http://xmpp.org/extensions/xep-0045.html

[11] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
Subscribe,” XMPP Standards Foundation, Draft Standard XEP-0060,
Jul. 2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.html

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[13] M. M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1109/MPRV.2008.80

[14] J. Fogarty, R. S. Baker, and S. E. Hudson, “Case Studies in
the Use of ROC Curve Analysis for Sensor-based Estimates in
Human Computer Interaction,” in Proceedings of Graphics Interface
2005, ser. GI ’05. School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2005, pp. 129–136. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1089508.1089530

Károly Farkas received his Ph.D. degree in Com-
puter Science in 2007 from ETH Zurich, Switzer-
land, and his M.Sc. degree in Computer Science in
1998 from the Budapest University of Technology
and Economics (BME), Hungary. Currently he is
working as an associate professor at BME. His
research interests cover the field of communica-
tion networks, especially autonomic, self-organized,
wireless and mobile ad hoc networks, and mobile
crowdsourcing. He has published more than 70 sci-
entific papers in different journals, conferences and

workshops and he has given a plenty of regular and invited talks. In the
years past, he supervised a number of student theses and coordinated or
participated in several national and international research projects, such as
CityCrowdSource of EIT ICTLabs. Moreover, he acted as program committee
member, reviewer and organizer of numerous scientific conferences, thus he
took the general co-chair role of the IEEE PerCom 2014 conference and
the TPC co-chair role of the CROWDSENSING 2014 and the CASPer 2015
workshops. He is the coordinator of the local Cisco Networking Academy
and was the founding initiator of the Cisco IPv6 Training Laboratory and the
BME NetSkills Challenge student competition at BME. Between 2012 - 2015
Dr. Farkas has been awarded the Bolyai János Research Fellowship of the
Hungarian Academy of Sciences.

Gábor Fehér graduated in 1998 at the Budapest
University of Technology and Economics on the
Faculty of Electronic Engineering and Informatics.
In 2004 he received a PhD. degree, the topic of his
thesis was resource control in IP networks. Currently
he is an associate professor at the same university.
Besides giving lectures, he is also contributing to
various national and international research projects.
From 2004 he is continuously involved in three
consecutive EU founded IST/ICT projects. He has
teaching activity on the faculty’s Smart City spe-

cialization working with microelectronics, sensor networks and smartphones.
He and his students are working on more projects with crowdsouring and
crowdsensing, from the basic research up to the prototype applications.

András Benczúr received his Ph.D. at the Mas-
sachusetts Institute of Technology in 1997. Since
then his interest turned to Data Science. He is the
head of 30 doctoral students, post-docs and develop-
ers at the Institute for Computer Science and Control
of the Hungarian Academy of Sciences (SZTAKI).
He is site coordinator in the Hungarian Future-
ICT project, and cloud computing activity leader
in the Budapest node of EIT ICTLabs. He serves
on the program committees of leading conferences
including WWW, WSDM, ECML/PKDD, he was

Workshop Chair for WWW 2009 and main organizer of the ECML/PKDD
Discovery Challenge 2010. In 2012 he was awarded the Momentum grant of
the Hungarian Academy of Sciences for his research in Big Data.

Csaba Sidló started working on data warehousing
projects and application driven research problems of
extremely large data sets in 2000. He joined the
Institute for Computer Science and Control of the
Hungarian Academy of Sciences (SZTAKI) in 2004;
he is now head of the Big Data Business Intelligence
research group. His main interest is Big Data analyt-
ics and business intelligence on scalable distributed
architectures. His industrial projects include master
data entity resolution, integration and analytics of
log, web and location data. He is currently involved

in several big data projects for web, telecom and sensor data analytics.
Csaba authored several research papers and book chapters, and has a PhD
in Informatics from Eötvös University, Hungary.

INFOCOMMUNICATIONS JOURNAL 8

[7] L. Bedogni, M. Di Felice, and L. Bononi, “By Train or by Car?
Detecting the User’s Motion Type Through Smartphone Sensors Data,”
in Proceedings of IFIP Wireless Days Conference (WD 2012), 2012, pp.
1–6.

[8] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction
Using Smartphones,” in Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2011), Nov. 2011, pp.
1–14.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible Markup Language (XML) 1.0 (Fifth Edition),” W3C, W3C
Recommendation REC-xml-20081126, Nov. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[10] P. Saint-Andre, “XEP-0045: Multi-User Chat,” XMPP Standards
Foundation, Standards Track XEP-0045, Feb. 2012. [Online]. Available:
http://xmpp.org/extensions/xep-0045.html

[11] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
Subscribe,” XMPP Standards Foundation, Draft Standard XEP-0060,
Jul. 2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.html

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[13] M. M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1109/MPRV.2008.80

[14] J. Fogarty, R. S. Baker, and S. E. Hudson, “Case Studies in
the Use of ROC Curve Analysis for Sensor-based Estimates in
Human Computer Interaction,” in Proceedings of Graphics Interface
2005, ser. GI ’05. School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2005, pp. 129–136. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1089508.1089530

Károly Farkas received his Ph.D. degree in Com-
puter Science in 2007 from ETH Zurich, Switzer-
land, and his M.Sc. degree in Computer Science in
1998 from the Budapest University of Technology
and Economics (BME), Hungary. Currently he is
working as an associate professor at BME. His
research interests cover the field of communica-
tion networks, especially autonomic, self-organized,
wireless and mobile ad hoc networks, and mobile
crowdsourcing. He has published more than 70 sci-
entific papers in different journals, conferences and

workshops and he has given a plenty of regular and invited talks. In the
years past, he supervised a number of student theses and coordinated or
participated in several national and international research projects, such as
CityCrowdSource of EIT ICTLabs. Moreover, he acted as program committee
member, reviewer and organizer of numerous scientific conferences, thus he
took the general co-chair role of the IEEE PerCom 2014 conference and
the TPC co-chair role of the CROWDSENSING 2014 and the CASPer 2015
workshops. He is the coordinator of the local Cisco Networking Academy
and was the founding initiator of the Cisco IPv6 Training Laboratory and the
BME NetSkills Challenge student competition at BME. Between 2012 - 2015
Dr. Farkas has been awarded the Bolyai János Research Fellowship of the
Hungarian Academy of Sciences.

Gábor Fehér graduated in 1998 at the Budapest
University of Technology and Economics on the
Faculty of Electronic Engineering and Informatics.
In 2004 he received a PhD. degree, the topic of his
thesis was resource control in IP networks. Currently
he is an associate professor at the same university.
Besides giving lectures, he is also contributing to
various national and international research projects.
From 2004 he is continuously involved in three
consecutive EU founded IST/ICT projects. He has
teaching activity on the faculty’s Smart City spe-

cialization working with microelectronics, sensor networks and smartphones.
He and his students are working on more projects with crowdsouring and
crowdsensing, from the basic research up to the prototype applications.

András Benczúr received his Ph.D. at the Mas-
sachusetts Institute of Technology in 1997. Since
then his interest turned to Data Science. He is the
head of 30 doctoral students, post-docs and develop-
ers at the Institute for Computer Science and Control
of the Hungarian Academy of Sciences (SZTAKI).
He is site coordinator in the Hungarian Future-
ICT project, and cloud computing activity leader
in the Budapest node of EIT ICTLabs. He serves
on the program committees of leading conferences
including WWW, WSDM, ECML/PKDD, he was

Workshop Chair for WWW 2009 and main organizer of the ECML/PKDD
Discovery Challenge 2010. In 2012 he was awarded the Momentum grant of
the Hungarian Academy of Sciences for his research in Big Data.

Csaba Sidló started working on data warehousing
projects and application driven research problems of
extremely large data sets in 2000. He joined the
Institute for Computer Science and Control of the
Hungarian Academy of Sciences (SZTAKI) in 2004;
he is now head of the Big Data Business Intelligence
research group. His main interest is Big Data analyt-
ics and business intelligence on scalable distributed
architectures. His industrial projects include master
data entity resolution, integration and analytics of
log, web and location data. He is currently involved

in several big data projects for web, telecom and sensor data analytics.
Csaba authored several research papers and book chapters, and has a PhD
in Informatics from Eötvös University, Hungary.

INFOCOMMUNICATIONS JOURNAL 8

[7] L. Bedogni, M. Di Felice, and L. Bononi, “By Train or by Car?
Detecting the User’s Motion Type Through Smartphone Sensors Data,”
in Proceedings of IFIP Wireless Days Conference (WD 2012), 2012, pp.
1–6.

[8] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction
Using Smartphones,” in Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2011), Nov. 2011, pp.
1–14.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible Markup Language (XML) 1.0 (Fifth Edition),” W3C, W3C
Recommendation REC-xml-20081126, Nov. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[10] P. Saint-Andre, “XEP-0045: Multi-User Chat,” XMPP Standards
Foundation, Standards Track XEP-0045, Feb. 2012. [Online]. Available:
http://xmpp.org/extensions/xep-0045.html

[11] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
Subscribe,” XMPP Standards Foundation, Draft Standard XEP-0060,
Jul. 2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.html

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[13] M. M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1109/MPRV.2008.80

[14] J. Fogarty, R. S. Baker, and S. E. Hudson, “Case Studies in
the Use of ROC Curve Analysis for Sensor-based Estimates in
Human Computer Interaction,” in Proceedings of Graphics Interface
2005, ser. GI ’05. School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2005, pp. 129–136. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1089508.1089530

Károly Farkas received his Ph.D. degree in Com-
puter Science in 2007 from ETH Zurich, Switzer-
land, and his M.Sc. degree in Computer Science in
1998 from the Budapest University of Technology
and Economics (BME), Hungary. Currently he is
working as an associate professor at BME. His
research interests cover the field of communica-
tion networks, especially autonomic, self-organized,
wireless and mobile ad hoc networks, and mobile
crowdsourcing. He has published more than 70 sci-
entific papers in different journals, conferences and

workshops and he has given a plenty of regular and invited talks. In the
years past, he supervised a number of student theses and coordinated or
participated in several national and international research projects, such as
CityCrowdSource of EIT ICTLabs. Moreover, he acted as program committee
member, reviewer and organizer of numerous scientific conferences, thus he
took the general co-chair role of the IEEE PerCom 2014 conference and
the TPC co-chair role of the CROWDSENSING 2014 and the CASPer 2015
workshops. He is the coordinator of the local Cisco Networking Academy
and was the founding initiator of the Cisco IPv6 Training Laboratory and the
BME NetSkills Challenge student competition at BME. Between 2012 - 2015
Dr. Farkas has been awarded the Bolyai János Research Fellowship of the
Hungarian Academy of Sciences.

Gábor Fehér graduated in 1998 at the Budapest
University of Technology and Economics on the
Faculty of Electronic Engineering and Informatics.
In 2004 he received a PhD. degree, the topic of his
thesis was resource control in IP networks. Currently
he is an associate professor at the same university.
Besides giving lectures, he is also contributing to
various national and international research projects.
From 2004 he is continuously involved in three
consecutive EU founded IST/ICT projects. He has
teaching activity on the faculty’s Smart City spe-

cialization working with microelectronics, sensor networks and smartphones.
He and his students are working on more projects with crowdsouring and
crowdsensing, from the basic research up to the prototype applications.

András Benczúr received his Ph.D. at the Mas-
sachusetts Institute of Technology in 1997. Since
then his interest turned to Data Science. He is the
head of 30 doctoral students, post-docs and develop-
ers at the Institute for Computer Science and Control
of the Hungarian Academy of Sciences (SZTAKI).
He is site coordinator in the Hungarian Future-
ICT project, and cloud computing activity leader
in the Budapest node of EIT ICTLabs. He serves
on the program committees of leading conferences
including WWW, WSDM, ECML/PKDD, he was

Workshop Chair for WWW 2009 and main organizer of the ECML/PKDD
Discovery Challenge 2010. In 2012 he was awarded the Momentum grant of
the Hungarian Academy of Sciences for his research in Big Data.

Csaba Sidló started working on data warehousing
projects and application driven research problems of
extremely large data sets in 2000. He joined the
Institute for Computer Science and Control of the
Hungarian Academy of Sciences (SZTAKI) in 2004;
he is now head of the Big Data Business Intelligence
research group. His main interest is Big Data analyt-
ics and business intelligence on scalable distributed
architectures. His industrial projects include master
data entity resolution, integration and analytics of
log, web and location data. He is currently involved

in several big data projects for web, telecom and sensor data analytics.
Csaba authored several research papers and book chapters, and has a PhD
in Informatics from Eötvös University, Hungary.

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Membrane Systems from the Viewpoint of the
Chemical Computing Paradigm

Péter Battyányi and György Vaszil

Abstract—Membrane systems are nature motivated abstract
computational models inspired by basic features of biological
cells and their membranes. They are examples of the chemical
computational paradigm which describes computation in terms
of chemical solutions where molecules interact according to
rules defining their reaction capabilities. In this survey, we first
review some of the basic features and properties of the chemical
paradigm of computation, and also give a short introduction to
membrane systems. Then examine the relationship of the certain
chemical programming formalisms and some simple types of
membrane systems.

Index Terms—Abstract computational models, chemical com-
puting paradigm, membrane systems.

I. INTRODUCTION

MEMBRANE systems are abstract computational mod-
els inspired by the architecture and the functioning

of biological cells. Their structure consists of hierarchically
embedded membranes, with multisets of symbolic objects
associated to the regions enclosed by them. The evolution of
the system is governed by rules assigned to the regions. The
system performs nondeterministic transformations of these
multisets, which produces a series of configuration changes
which is interpreted as a computation. The area was initiated
by Gh. Păun in [11] and the literature on the domain has
grown very fast. Soon it became one of the most important
and most popular areas of Natural Computing. For details on
the developments, consult the monograph [12] or the more
recent handbook [13].

In this survey, we look at the field of membrane computing
as a particular example of the so called chemical computa-
tional paradigm. This paradigm aims to describe computations
in terms of a symbolic chemical solution of molecules and the
reactions which can take place between them. Its origins go
back to the Gamma programming language of Bânatre and
Le Métayer introduced in [6], [7]. Their aim was to free the
expression of algorithms from the sequentiality which is not
inherently present in the problem to be solved, that is, the
sequentiality which is implied by the structure of the computa-
tional model on which the given algorithm is to be performed.
In other words, their aim was to free the programmer from the
necessity of taking into account the underlying architecture of
the machine that is being programmed.

The idea was carried on into several directions, see [3] for an
overview. From our point of view, one of the most interesting

Manuscript received October 23, 2014, revised December 8, 2014.
Péter Battyányi and György Vaszil are with the Department of Com-

puter Science, Faculty of Informatics, University of Debrecen, Kassai
út 26, 4028 Debrecen, Hungary, e-mail: battyanyi.peter@inf.unideb.hu,
vaszil.gyorgy@inf.unideb.hu

developments was the introduction of the so called chemical
abstract machine, see [9], where the notion of membrane
appears serving as a delimiter between different types of sub-
solutions, forcing the reactions of the sub-solutions to occur
in a locally isolated way. This model and the idea of locally
delimited regions and membranes was one of the explicit
motivations behind membrane systems, as they appear in [11].

In the following we give a short introduction to some of
the formalisms used to describe computations in the chemical
way, and also present some of the basic notions of membrane
computing. Then, based on the results of [10] and [8] we
present some ideas on how the chemical formalisms and
membrane systems can be related to each other. This approach
is interesting in at least two ways. By being able to translate
chemical programs to membrane systems, we could obtain
a high level programming language for the description of
membrane algorithms. On the other hand, by being able to
describe membrane computations with some of the chemical
formalisms, we would be able to reason about the properties
of membrane systems in a mathematically precise manner.

II. PRELIMINARY DEFINITIONS AND NOTATION

An alphabet is a finite non-empty set of symbols V , the set
of strings over V is denoted by V ∗ .

A finite multiset over an alphabet V is a mapping M : V →
N where N denotes the set of non-negative integers, and M(a)
for a ∈ V is said to be the multiplicity of a in M . The set of
all finite multisets over the set V is denoted by M(V).

We usually enumerate the not necessarily distinct elements
a1, . . . , an of a multiset as M = 〈a1, . . . , an〉, but the multiset
M can also be represented by any permutation of a string
w = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where if M(x) �= 0,

then there exists j, 1 ≤ j ≤ n, such that x = aj . The empty
multiset is denoted by ∅.

For more on the basics of formal language theory and
Membrane Computing the reader is referred to the monograph
[15], and the handbooks [14] and [13].

III. COMPUTATION AS REACTIONS IN A CHEMICAL
SOLUTION

A chemical “machine” can be thought of as a symbolic
chemical solution where data can be seen as molecules and
operations as chemical reactions. If some molecules satisfy
a reaction condition, they are replaced by the result of the
reaction. If no reaction is possible, the program terminates.
Chemical solutions are represented by multisets. Molecules
interact freely according to reaction rules which results in an

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Membrane Systems from the Viewpoint of the
Chemical Computing Paradigm

Péter Battyányi and György Vaszil

Abstract—Membrane systems are nature motivated abstract
computational models inspired by basic features of biological
cells and their membranes. They are examples of the chemical
computational paradigm which describes computation in terms
of chemical solutions where molecules interact according to
rules defining their reaction capabilities. In this survey, we first
review some of the basic features and properties of the chemical
paradigm of computation, and also give a short introduction to
membrane systems. Then examine the relationship of the certain
chemical programming formalisms and some simple types of
membrane systems.

Index Terms—Abstract computational models, chemical com-
puting paradigm, membrane systems.

I. INTRODUCTION

MEMBRANE systems are abstract computational mod-
els inspired by the architecture and the functioning

of biological cells. Their structure consists of hierarchically
embedded membranes, with multisets of symbolic objects
associated to the regions enclosed by them. The evolution of
the system is governed by rules assigned to the regions. The
system performs nondeterministic transformations of these
multisets, which produces a series of configuration changes
which is interpreted as a computation. The area was initiated
by Gh. Păun in [11] and the literature on the domain has
grown very fast. Soon it became one of the most important
and most popular areas of Natural Computing. For details on
the developments, consult the monograph [12] or the more
recent handbook [13].

In this survey, we look at the field of membrane computing
as a particular example of the so called chemical computa-
tional paradigm. This paradigm aims to describe computations
in terms of a symbolic chemical solution of molecules and the
reactions which can take place between them. Its origins go
back to the Gamma programming language of Bânatre and
Le Métayer introduced in [6], [7]. Their aim was to free the
expression of algorithms from the sequentiality which is not
inherently present in the problem to be solved, that is, the
sequentiality which is implied by the structure of the computa-
tional model on which the given algorithm is to be performed.
In other words, their aim was to free the programmer from the
necessity of taking into account the underlying architecture of
the machine that is being programmed.

The idea was carried on into several directions, see [3] for an
overview. From our point of view, one of the most interesting

Manuscript received October 23, 2014, revised December 8, 2014.
Péter Battyányi and György Vaszil are with the Department of Com-

puter Science, Faculty of Informatics, University of Debrecen, Kassai
út 26, 4028 Debrecen, Hungary, e-mail: battyanyi.peter@inf.unideb.hu,
vaszil.gyorgy@inf.unideb.hu

developments was the introduction of the so called chemical
abstract machine, see [9], where the notion of membrane
appears serving as a delimiter between different types of sub-
solutions, forcing the reactions of the sub-solutions to occur
in a locally isolated way. This model and the idea of locally
delimited regions and membranes was one of the explicit
motivations behind membrane systems, as they appear in [11].

In the following we give a short introduction to some of
the formalisms used to describe computations in the chemical
way, and also present some of the basic notions of membrane
computing. Then, based on the results of [10] and [8] we
present some ideas on how the chemical formalisms and
membrane systems can be related to each other. This approach
is interesting in at least two ways. By being able to translate
chemical programs to membrane systems, we could obtain
a high level programming language for the description of
membrane algorithms. On the other hand, by being able to
describe membrane computations with some of the chemical
formalisms, we would be able to reason about the properties
of membrane systems in a mathematically precise manner.

II. PRELIMINARY DEFINITIONS AND NOTATION

An alphabet is a finite non-empty set of symbols V , the set
of strings over V is denoted by V ∗ .

A finite multiset over an alphabet V is a mapping M : V →
N where N denotes the set of non-negative integers, and M(a)
for a ∈ V is said to be the multiplicity of a in M . The set of
all finite multisets over the set V is denoted by M(V).

We usually enumerate the not necessarily distinct elements
a1, . . . , an of a multiset as M = 〈a1, . . . , an〉, but the multiset
M can also be represented by any permutation of a string
w = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where if M(x) �= 0,

then there exists j, 1 ≤ j ≤ n, such that x = aj . The empty
multiset is denoted by ∅.

For more on the basics of formal language theory and
Membrane Computing the reader is referred to the monograph
[15], and the handbooks [14] and [13].

III. COMPUTATION AS REACTIONS IN A CHEMICAL
SOLUTION

A chemical “machine” can be thought of as a symbolic
chemical solution where data can be seen as molecules and
operations as chemical reactions. If some molecules satisfy
a reaction condition, they are replaced by the result of the
reaction. If no reaction is possible, the program terminates.
Chemical solutions are represented by multisets. Molecules
interact freely according to reaction rules which results in an

